Skip to main content

Deduce: de-identification method for Dutch medical text

Project description

deduce

tests coverage build documentation pypi version pypi python versions pypi downloads license black

Installation - Versions - Getting Started - Documentation - Contributiong - Authors - License

Deduce 2.0.0 has been released! It includes a 10x speedup, and way more features for customizing and tailoring. Some small changes are needed to keep going from version 1, read more about it here: docs/migrating-to-v2

De-identify clinial text written in Dutch using deduce, a rule-based de-identification method for Dutch clinical text.

The development, principles and validation of deduce were initially described in Menger et al. (2017). De-identification of clinical text is needed for using text data for analysis, to comply with legal requirements and to protect the privacy of patients. Our rule-based method removes Protected Health Information (PHI) in the following categories:

  • Person names, including initials
  • Geographical locations smaller than a country
  • Names of institutions that are related to patient treatment
  • Dates
  • Ages
  • Patient numbers
  • Telephone numbers
  • E-mail addresses and URLs

If you use deduce, please cite the following paper:

Menger, V.J., Scheepers, F., van Wijk, L.M., Spruit, M. (2017). DEDUCE: A pattern matching method for automatic de-identification of Dutch medical text, Telematics and Informatics, 2017, ISSN 0736-5853

Installation

pip install deduce

Versions

For most cases the latest version is suitable, but some specific milestones are:

  • 2.0.0 - Major refactor, with speedups, many new options for customizing, functionally very similar to original
  • 1.0.8 - Small bugfixes compared to original release
  • 1.0.1 - Original release with Menger et al. (2017)

Detailed versioning information is accessible in the changelog.

Getting started

The basic way to use deduce, is to pass text to the deidentify method of a Deduce object:

from deduce import Deduce

deduce = Deduce()

text = """Dit is stukje tekst met daarin de naam Jan Jansen. De patient J. Jansen 
        (e: j.jnsen@email.com, t: 06-12345678) is 64 jaar oud en woonachtig 
        in Utrecht. Hij werd op 10 oktober door arts Peter de Visser ontslagen 
        van de kliniek van het UMCU."""

doc = deduce.deidentify(text)

The output is available in the Document object:

from pprint import pprint

pprint(doc.annotations)

AnnotationSet({Annotation(text='Jan Jansen', start_char=39, end_char=49, tag='persoon', length=10),
               Annotation(text='Peter de Visser', start_char=185, end_char=200, tag='persoon', length=15),
               Annotation(text='j.jnsen@email.com', start_char=76, end_char=93, tag='url', length=17),
               Annotation(text='10 oktober', start_char=164, end_char=174, tag='datum', length=10),
               Annotation(text='patient J. Jansen', start_char=54, end_char=71, tag='persoon', length=17),
               Annotation(text='64', start_char=114, end_char=116, tag='leeftijd', length=2),
               Annotation(text='UMCU', start_char=234, end_char=238, tag='instelling', length=4),
               Annotation(text='06-12345678', start_char=98, end_char=109, tag='telefoonnummer', length=11),
               Annotation(text='Utrecht', start_char=143, end_char=150, tag='locatie', length=7)})

print(doc.deidentified_text)

"""Dit is stukje tekst met daarin de naam <PERSOON-1>. De <PERSOON-2> 
(e: <URL-1>, t: <TELEFOONNUMMER-1>) is <LEEFTIJD-1> jaar oud en woonachtig 
in <LOCATIE-1>. Hij werd op <DATUM-1> door arts <PERSOON-3> ontslagen 
van de kliniek van het <INSTELLING-1>."""

Aditionally, if the names of the patient are known, they may be added as metadata, where they will be picked up by deduce:

from deduce.person import Person

patient = Person(first_names=["Jan"], initials="JJ", surname="Jansen")
doc = deduce.deidentify(text, metadata={'patient': patient})

print (doc.deidentified_text)

"""Dit is stukje tekst met daarin de naam <PATIENT>. De <PATIENT> 
(e: <URL-1>, t: <TELEFOONNUMMER-1>) is <LEEFTIJD-1> jaar oud en woonachtig 
in <LOCATIE-1>. Hij werd op <DATUM-1> door arts <PERSOON-1> ontslagen 
van de kliniek van het <INSTELLING-1>."""

As you can see, adding known names keeps references to <PATIENT> in text. It also increases recall, as not all known names are contained in the lookup lists.

Documentation

A more extensive tutorial on using, configuring and modifying deduce is available at: docs/tutorial

Basic documentation and API are available at: docs

Contributing

For setting up the dev environment and contributing guidelines, see: docs/contributing

Authors

  • Vincent Menger - Initial work
  • Jonathan de Bruin - Code review
  • Pablo Mosteiro - Bug fixes, structured annotations

License

This project is licensed under the GNU LGPLv3 license - see the LICENSE.md file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deduce-2.0.3.tar.gz (99.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

deduce-2.0.3-py3-none-any.whl (101.1 kB view details)

Uploaded Python 3

File details

Details for the file deduce-2.0.3.tar.gz.

File metadata

  • Download URL: deduce-2.0.3.tar.gz
  • Upload date:
  • Size: 99.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.10 Linux/5.15.0-1035-azure

File hashes

Hashes for deduce-2.0.3.tar.gz
Algorithm Hash digest
SHA256 254858ed5b3e884b6100ae235d20e74f3ed6f4adc3d37f5ad4439e52d92a1077
MD5 bc6c7b0d8dc956637ede6bb65579ca74
BLAKE2b-256 f64ad79ce593caaa7cefe098c84c0116f7e82017d3ab3c54cf2e6434bd3d457b

See more details on using hashes here.

File details

Details for the file deduce-2.0.3-py3-none-any.whl.

File metadata

  • Download URL: deduce-2.0.3-py3-none-any.whl
  • Upload date:
  • Size: 101.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.10 Linux/5.15.0-1035-azure

File hashes

Hashes for deduce-2.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 6845a4a16be7fe176a90ef38771e2c84823386b9812a81c4de43ae7fefd0d336
MD5 9203c60fccf9a15e34879f3d3e6c5a5e
BLAKE2b-256 622fad5310d7613cce504d86ebc93281bce487ef220a8cc5b7dc84f3820eb7fe

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page