Skip to main content

Electrophys Feature Extract Library (eFEL)

Project description

The Electrophys Feature Extract Library (eFEL) allows neuroscientists to automatically extract features from time series data recorded from neurons (both in vitro and in silico). Examples are the action potential width and amplitude in voltage traces recorded during whole-cell patch clamp experiments. The user of the library provides a set of traces and selects the features to be calculated. The library will then extract the requested features and return the values to the user.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for efel, version 3.0.103
Filename, size File type Python version Upload date Hashes
Filename, size efel-3.0.103.tar.gz (90.5 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page