Skip to main content

Fill voids in 3D binary images fast.

Project description

PyPI version

Fill Voids

# PYTHON
import fill_voids

img = ... # 2d or 3d binary image 
filled_image = fill_voids.fill(img, in_place=False) # in_place allows editing of original image
filled_image, N = fill_voids.fill(img, return_fill_count=True) # returns number of voxels filled in
// C++ 
#include "fill_voids.hpp"

size_t sx, sy, sz;
sx = sy = sz = 512;

uint8_t* labels = ...; // 512x512x512 binary image

// modifies labels as a side effect, returns number of voxels filled in
size_t fill_ct = fill_voids::binary_fill_holes<uint8_t>(labels, sx, sy, sz); // 3D

// let labels now represent a 512x512 2D image
size_t fill_ct = fill_voids::binary_fill_holes<uint8_t>(labels, sx, sy); // 2D

Filling five labels using SciPy binary_fill_holes vs fill_voids from a 512x512x512 densely labeled connectomics segmentation. (black) fill_voids 1.1.0 (blue) fill_voids 1.1.0 with `in_place=True` (red) scipy 1.4.1
Fig. 1: Filling five labels using SciPy binary_fill_holes vs fill_voids from a 512x512x512 densely labeled connectomics segmentation. (black) fill_voids 1.1.0 (blue) fill_voids 1.1.0 with `in_place=True` (red) scipy 1.4.1. In this test, fill_voids (`in_place=False`) is significantly faster than scipy with lower memory usage.

This library contains both 2D and 3D void filling algorithms, similar in function to scipy.ndimage.morphology.binary_fill_holes, but with an eye towards higher performance. The SciPy hole filling algorithm uses slow serial dilations.

The current version of this library uses a scan line flood fill of the background labels and then labels everything not filled as foreground.

pip Installation

pip install fill-voids

If there's no binary for your platform and you have a C++ compiler try:

sudo apt-get install python3-dev # This is for Ubuntu, but whatever is appropriate for you
pip install numpy
pip install fill-voids --no-binary :all:

Current Algorithm

  1. Raster scan and mark every foreground voxel 2 for pre-existing foreground.
  2. Raster scan each face of the current image and the first time a black pixel (0) is encountered after either starting or enountering a foreground pixel, add that location to a stack.
  3. Flood fill (six connected) with the visited background color (1) in sequence from each location in the stack that is not already foreground.
  4. Write out a binary image the same size as the input mapped as buffer != 1 (i.e. 0 or 2). This means non-visited holes and foreground will be marked as 1 for foreground and the visited background will be marked as 0.

We improve performance significantly by using libdivide to make computing x,y,z coordinates from array index faster, by scanning right and left to take advantage of machine memory speed, by only placing a neighbor on the stack when we've either just started a scan or just passed a foreground pixel while scanning.

Multi-Label Concept

Similarly to the connected-components-3d and euclidean-distance-3d projects, in connectomics, it can be common to want to apply void filling algorithms to all labels within a densely packed volume. A multi-label algorithm can be much faster than even the fastest serial application of a binary algorithm. Here's how this might go given an input image I:

  1. Compute M = max(I)
  2. Perform the fill as in the binary algorithm labeling the surrounding void as M+1. This means all voids are now either legitimate and can be filled or holes in-between labels.
  3. Raster scan through the volume. If a new void is encountered, we must determine if it is fillable or an in-between one which will not be filled.
  4. On encountering the void, record the last label seen and contour trace around it. If only that label is encountered during contour tracing, it is fillable. If another label is encountered, it is not fillable.
  5. During the contour trace, mark the trace using an integer not already used, such as M+2. If that label is encountered in the future, you'll know what to fill between it and the next label encountered based on the fillable determination. This phase stops when either the twin of the first M+2 label is encountered or when futher contour tracing isn't possible (in the case of single voxel gaps).
  6. (Inner Labels) If another label is encountered in the middle of a void, contour trace around it and mark the boundary with the same M+2 label that started the current fill.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fill_voids-2.0.7.tar.gz (3.2 MB view details)

Uploaded Source

Built Distributions

fill_voids-2.0.7-cp312-cp312-win_amd64.whl (168.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

fill_voids-2.0.7-cp312-cp312-win32.whl (137.3 kB view details)

Uploaded CPython 3.12 Windows x86

fill_voids-2.0.7-cp312-cp312-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

fill_voids-2.0.7-cp312-cp312-musllinux_1_2_i686.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

fill_voids-2.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fill_voids-2.0.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.7-cp312-cp312-macosx_11_0_arm64.whl (181.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fill_voids-2.0.7-cp311-cp311-win_amd64.whl (183.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

fill_voids-2.0.7-cp311-cp311-win32.whl (142.4 kB view details)

Uploaded CPython 3.11 Windows x86

fill_voids-2.0.7-cp311-cp311-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

fill_voids-2.0.7-cp311-cp311-musllinux_1_2_i686.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

fill_voids-2.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fill_voids-2.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.7-cp311-cp311-macosx_11_0_arm64.whl (186.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fill_voids-2.0.7-cp310-cp310-win_amd64.whl (182.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

fill_voids-2.0.7-cp310-cp310-win32.whl (140.7 kB view details)

Uploaded CPython 3.10 Windows x86

fill_voids-2.0.7-cp310-cp310-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

fill_voids-2.0.7-cp310-cp310-musllinux_1_2_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

fill_voids-2.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fill_voids-2.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.7-cp310-cp310-macosx_11_0_arm64.whl (186.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fill_voids-2.0.7-cp39-cp39-win_amd64.whl (182.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

fill_voids-2.0.7-cp39-cp39-win32.whl (141.2 kB view details)

Uploaded CPython 3.9 Windows x86

fill_voids-2.0.7-cp39-cp39-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

fill_voids-2.0.7-cp39-cp39-musllinux_1_2_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

fill_voids-2.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fill_voids-2.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.7-cp39-cp39-macosx_11_0_arm64.whl (186.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fill_voids-2.0.7-cp38-cp38-win_amd64.whl (186.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

fill_voids-2.0.7-cp38-cp38-win32.whl (150.3 kB view details)

Uploaded CPython 3.8 Windows x86

fill_voids-2.0.7-cp38-cp38-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

fill_voids-2.0.7-cp38-cp38-musllinux_1_2_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

fill_voids-2.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fill_voids-2.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.7-cp38-cp38-macosx_11_0_arm64.whl (189.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fill_voids-2.0.7-cp37-cp37m-win_amd64.whl (179.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

fill_voids-2.0.7-cp37-cp37m-win32.whl (148.1 kB view details)

Uploaded CPython 3.7m Windows x86

fill_voids-2.0.7-cp37-cp37m-musllinux_1_2_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

fill_voids-2.0.7-cp37-cp37m-musllinux_1_2_i686.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

fill_voids-2.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fill_voids-2.0.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.7-cp36-cp36m-win_amd64.whl (191.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

fill_voids-2.0.7-cp36-cp36m-win32.whl (155.3 kB view details)

Uploaded CPython 3.6m Windows x86

fill_voids-2.0.7-cp36-cp36m-musllinux_1_2_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ x86-64

fill_voids-2.0.7-cp36-cp36m-musllinux_1_2_i686.whl (2.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ i686

fill_voids-2.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

fill_voids-2.0.7-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

File details

Details for the file fill_voids-2.0.7.tar.gz.

File metadata

  • Download URL: fill_voids-2.0.7.tar.gz
  • Upload date:
  • Size: 3.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7.tar.gz
Algorithm Hash digest
SHA256 c04255a716573cb1388c459ace11361272b296c8d0ca037ff7ccec0e41308df7
MD5 fa3ed358306ee552c92a7275c6389685
BLAKE2b-256 13418f31a719e3a9cd4ac7d2f689d9585a630fa748f0481c46e3b172f36368b3

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 168.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6d5a59b9bade0f1a665483cfc726f39e777731800e27962fb67ba945fa19eb25
MD5 aa76f1f2ed4be9f8a6c0c8c7b6f3ae37
BLAKE2b-256 4ffa761fa0b1c8cf0e40ff2fad7584cb3644cb23ab99b2d8a36491dfe6ab0523

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp312-cp312-win32.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp312-cp312-win32.whl
  • Upload date:
  • Size: 137.3 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 25b813be0c37e4e9233789c7e71f934fe7384d5e1ad04656c179ce99761e8f6d
MD5 a9fdc7ee1ece9dddada28cfdc18c85ba
BLAKE2b-256 ccce53967214fca93e480065adee126d6883622018ea880bafe5ef73a3ba9d4f

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp312-cp312-musllinux_1_2_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, musllinux: musl 1.2+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fc29f3f2b35853dca527b1bca86c777665cbb40805627b543fbdbfb235e434a5
MD5 7f8d36ef1ef01498f0819b348e540fdc
BLAKE2b-256 86eb226a4333cddbbda65cde27085eb1ab747ac0caa9ae5e4eefb8a4b001d0b7

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp312-cp312-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 6cded5b541ba1bcddf2a449eea566d4bdf9c95602a454a05d1e1c51cd708e173
MD5 8c85e5bd5127f39572147e313a8a6cc2
BLAKE2b-256 7df111cc6fa4b6323dfa0f614b99657a52f08b50a4dd3469708d0e37d06adc6b

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f14ce382f2c849d925dc557e24c0db820657df4eccf911985c82fab59de27a66
MD5 1ad6d7e6fb80d37f53182906b9457dbf
BLAKE2b-256 c3a78f7cee27220574af559a043bffb3816c9f5ae1a70207a5e4b41e03e4c435

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 49d22d6318cac381400dc176e3097d0b487e760630ef068c77011c3297ff3793
MD5 268797115d80dbb9da5bf4bb916760f5
BLAKE2b-256 e35c4cae1649bf51fe356a2156e63f48f3b0d4603f895afebb9de8132748778e

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp312-cp312-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 181.7 kB
  • Tags: CPython 3.12, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 81f6e4fa7d9b5fc335c8bcb08d15044b9d2616bf633fef73b3b8ff6beb07b20b
MD5 c33f2d004f37ec06c6c4f3a80bcd60c0
BLAKE2b-256 d2ce46860bae48f62b35d56fea043d11af61f7a1f70d62e95a44f7ecf23b6ffd

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 183.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 be9f93f078339670981ef269735041175a5b57b6c74af86148580d208fabd2d2
MD5 56d92459f6ac002b32e2b32d6234bd46
BLAKE2b-256 1d3d4c4a065663c72fb2d318aba2cf2df2e3f47340cc1d10d3ffccb66644faad

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp311-cp311-win32.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp311-cp311-win32.whl
  • Upload date:
  • Size: 142.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 80923ae3d84116be378e485a350f4c977c390a42feaaddc5133c0ca7abba2f61
MD5 c52302b6383fbfc03a48ec37e818a04d
BLAKE2b-256 82aea3c2e0a19364a2f124b1963760ec4945bfc8b9889f3ea503677eca85c54b

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp311-cp311-musllinux_1_2_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, musllinux: musl 1.2+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6cc13dadc86fa82775cdbe0fd7d87e5140609985862d98033120f703ebb8e32b
MD5 dd45b6c5718b04bb894a0f52f89d82f6
BLAKE2b-256 ca7e8346a08cb1d67e6c1894705367a86f373ef2e03292810725b19a12cc03a5

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp311-cp311-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.11, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 00ff3032b7a8da9fc0257b908a59fa297e0124e579b120183f40336bfc1f3e88
MD5 c6cfb3503468b5df88a2ae7225be7ff0
BLAKE2b-256 7c8f43314cf50d2e6c2a1e0585e69a856f2d781c40e0e3cefa6a350e93f6a965

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20c0c543054e5cc3984eabbdcc68dbaeb92013f64ade2b32aeb7492b34b991db
MD5 8c3f96d0038950ff1da8a62f00d910fc
BLAKE2b-256 fa05ac6c765d68015ef6bd60932854c04cdbcbcb661ab41cb4567310c6644f0b

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e99a76e4f959f6458b10736a50219ef3e5478a32d4e8969a342c72279c9ae01e
MD5 efa9639719eab1e1664660ec6f920cd2
BLAKE2b-256 eb04cea85a73d41052f221a5c0fd4ef2a2b256f493dc73c49f137907afd9d7c2

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 186.0 kB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 48877cbe9db8ef1c335e17a566d33346e403e7577908d4b47f27a3e0ae9de77f
MD5 769ff1f8674e21e08cf86363fb7aae55
BLAKE2b-256 e2fcdf193d5bfdae350ae06a0e0ea4d7bd82880880d793d7022651fb2d476ea8

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 182.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1afc33629734dff812908cec174743bb6143adfbc412d2677bbd694a92bd25ec
MD5 d56f4882fd4f5caedbe2b064c3a1ecf1
BLAKE2b-256 0e78242bc625a5ee2a4e206cdb9a06398a3d7a975142c2d8210213c8f6fbeedc

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp310-cp310-win32.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp310-cp310-win32.whl
  • Upload date:
  • Size: 140.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 62482e46c81489660924191144765771d9a9c8aa416d5db70daa61e4e95dd2f4
MD5 e77ac0fbe37f624f8d3bc9bf97c2e67f
BLAKE2b-256 1579da292990d12351ee0c0972f053df938b10b2a6ec01bccb55168591e70193

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp310-cp310-musllinux_1_2_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, musllinux: musl 1.2+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 55973c64e59e7d082f8680b4cc28a3fcd3d4daa9058dd3b4575dc244c36508ca
MD5 0518308c79a8be47aeb33792b2b23bec
BLAKE2b-256 8cc4e7b09ff75387ff28218cb8909ee22f7f299a92c1127958e057ef298c0b20

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp310-cp310-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 cf80dee3e09ce0dcc4e02a4e1197e231ff021d300243b4299454f3c3289ea927
MD5 4d3f0f08af175e3887db7e7d4277a110
BLAKE2b-256 2398986bba28883c0816b134f9f1919dae5fba7cd8487159f826cb6569bd0f3c

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c189f31a03d01f2d402be11b4a3e14a4f2a8d8028d2b2cb0d85814c33722c9f
MD5 c4cb5441dacd03d4e9eaf86a3f48b990
BLAKE2b-256 8700a9ae3a47cec44fa1952215ebb8e13c13042130f92190375f60b2e6c14ba1

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9c36cda7d2c6bf37f815f8b299590dce5345147174388491896797d908967fbb
MD5 76773248f20654e435eb6053917cdc68
BLAKE2b-256 203d1748c0c5bdc14f4cbd367c6dee9d99b16ba0797c475d5a93e18ff248f956

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 186.2 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5af4a40d904e84d0822e57b4dd4c1f512902537777df8b3e3d74a9e5c43ba989
MD5 463e58989c8e7bb73b545a30a7c9730e
BLAKE2b-256 8d633e3b1154463c353e5696e15e119275db244b3daaf2247a1bf5bd40e8b4a7

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 182.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ab7ee33f324ba5549177d7feefc505663cca55afc9beaf6d337637809bc2fd67
MD5 b6e1a36e52108532716ba476b08ff72c
BLAKE2b-256 726bffbdbbbc884988bd41b06cc233ba1b201c87c2dc5ea1792c3a01056b11f4

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp39-cp39-win32.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp39-cp39-win32.whl
  • Upload date:
  • Size: 141.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4a2ad59b55065d388e625274584a9690804b90dd740dec535b5eee4e9f6112ea
MD5 6584e0149eb1ec6f5e53b8264d2518b9
BLAKE2b-256 74b92e068a3012b6a2aa5954f06398cd5c74667f51fd739acc5b54804fd9360a

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp39-cp39-musllinux_1_2_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, musllinux: musl 1.2+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 198e76d9936fb4b4eddbf38181b63485295d94b42971be0c8284fd13c0d6f542
MD5 b3fde60fe947ffc0888ab040c72f0dc6
BLAKE2b-256 b6b6833d595fdf472112fbfd9483b39cbe9425042583646a3125c488b2054ca8

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp39-cp39-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b78c770df26aebb8ace5c921897add707ed4162ed6a1352e9fb067f552a28f9a
MD5 7da537fde593ce05899493a991e52793
BLAKE2b-256 13ca8cf1eeddfff18038e92b3ea24e61f1060d0f3d40c832143ac52d6d2a6a38

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a2aa1e5552c6f057eec9e44ab4e9eaeee52788fe8155b865105281d1429c796
MD5 1c59d8e35e06f098f2a60e11d92f20c1
BLAKE2b-256 735e490fc241b031e1b03c49ae357d209e31539ad7a6ace0632279e2ebdc0b69

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7e016b8d302387274d2e579570be68710027faafea99344b05f2129d84a57eaf
MD5 0eb72ff28cdad92dd7214edb2715579b
BLAKE2b-256 d926b1f352f048a66894f5e51b06e6850406cc1dc780e0a95044bdbc663c52b9

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 186.8 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8b7031dc1086748c6f67c32b4cecd467ae878b956902a60cbafbceeb4659f9e8
MD5 2c0070462caf59d665964293b06388fc
BLAKE2b-256 380dd3e8cdf6b23f618dc51edbc77e624cc3b9206be3a205db46bd5081638b12

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 186.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c8371c801d267980f8889ee33f32d97fab8a50e69ec121812a96b31f4033abb5
MD5 4f74eab9366335e1287be27ff18086e7
BLAKE2b-256 43a7f2f8912b82da8bec2dd5193693c09955eee233b1278e11b797973e9f67e1

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp38-cp38-win32.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp38-cp38-win32.whl
  • Upload date:
  • Size: 150.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b4235d7864227066d33ebf812f89badd05196cf52042bc1c9fe181f78754dccf
MD5 03f8cb8f540bd5d3d9dbab1345a97f60
BLAKE2b-256 d1d6fdd4701326162c1777751e44522a410d70a08361fd0561052b1d3b5d82e1

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp38-cp38-musllinux_1_2_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, musllinux: musl 1.2+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b7f6a2a8707654c2b0d85b29cea0e4d14e0740cdf81990133f07c4dc504213c6
MD5 dc87691f86ea4360d82febca50f6e9e6
BLAKE2b-256 8ad83e9030ee0053f75a2d11fc3e4eccd4be41e71c6e6dd0bd0cc3ef15bba0f0

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp38-cp38-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 176d434eda2745e8e52eb2a1589a29753221b34b2925bd258428011b4225c1ed
MD5 63f7b85addd18d268701345e1445748d
BLAKE2b-256 646a561baad3450c93f0af9b382d5936159593715c1301724a14e9c92de8b24c

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88d07b2ffa7bb0290b27ebd25a8162cc02aa8ecdb01ff8a4720d4fc08c5fa157
MD5 75f1fdd31635bc28931b8bc0eeccae7e
BLAKE2b-256 836dae059be513483f64e531290385763b706bb724251ce186a26be6f07f5144

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b8f8f5af41a40e3602d2f050472bbcf2fcc76f5759008bad2cd028643254694f
MD5 186b149b0100f6815fa226196ef36f4c
BLAKE2b-256 dcf0f69d35c47a86deb093921e35ad38e7751115a42e0543971821a68ded103b

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 189.0 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a186a317fd0b44f7818b8739b8339320e5ae3dcd9ce8b4115a082e9d20b14770
MD5 25837b462f4ea9c4dcd1badf6bc0bb2f
BLAKE2b-256 e50108afcdbdb701521361f8706d04b569c29023a7a3ade153b52c823c5b4c98

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 179.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 393c2d56f89fb5184a4687d725a84812bf6a5d018dfefeb2293c5f6563190690
MD5 e7cb4f7f52e7a2f52a252c8ba421c818
BLAKE2b-256 6f2acf45c17c66e0533422e05837a09e64cc7c3f9b919f540fe51a3a2af13708

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp37-cp37m-win32.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 148.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 29cfa2b9175da18f5519ef42e6022786f218c8893c4fabde0e70fd59f0536bf9
MD5 7f9ead7f85b4e73c264024dd31d5eee1
BLAKE2b-256 2f009bb597c54e2c9611429bbd1fd88611006b9d81854dafca1248c2f83d33e5

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp37-cp37m-musllinux_1_2_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, musllinux: musl 1.2+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0a3216dd3db9d0f5deb8c00fc5e3b32a3203941f80d4d249fb4d90cdadce4ad4
MD5 fae25cdfb0d76548c7e1df9460a9330a
BLAKE2b-256 b10e88bed338fb7a586d42ba6b70e84075615ff3db0c4949869d70e35a958ac5

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp37-cp37m-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0ce3b99b325a7a23f7d0e85c1aafe6a7a7055d536750de06a0f09d3ec92162aa
MD5 346f9e4697af5943e3d5ed416e58e63b
BLAKE2b-256 9b5e0c2129bc2fa6d0a3fc7b06575b570c4c67e630628a358846132dfe5db2bc

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47d7f65a00d2778933a638e50fd5995c287dd6d0516bb858578d0879ea3558eb
MD5 d6c0b09e3af048a051e2b893401542f0
BLAKE2b-256 e725352f64a546e56175a6ea3efd5983238ca9dfdc110fd85dea6a906fc3cca2

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e9f8bbef89135d1f562a8175ce4d259a1962d2d02a92cc597231e256c5c41e05
MD5 c6f7d8812110e9efd1da496cf4877843
BLAKE2b-256 d3121a49d4c82c3d67fd96de1f38e60b50318bc9893e6748842314c7d6d6d381

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 191.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c46f739468125c0d3266ca79123ece07e2ba33c538b778a17aca1599cf72e3e5
MD5 87cb92e23971bc85f29c9fce294a9de7
BLAKE2b-256 96d52cc22682e83aa9515c376886b62d30dcca3abbda6a0d3e4613db1ab378a5

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp36-cp36m-win32.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 155.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 79704f62e741d9646918233fac56eb594141e5a63e8144978e28b913e71b856b
MD5 4fdba553e1c12a0493bbc7b43d6f0c29
BLAKE2b-256 45e97d9a1cf3802b3551226264bdb5e3289a63cda8b3a8810a3bbd57debad485

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp36-cp36m-musllinux_1_2_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp36-cp36m-musllinux_1_2_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, musllinux: musl 1.2+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp36-cp36m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8b12f381ad214d1955dd957abb64963fd3ba6dee2d5b1bb731e6398301726565
MD5 330b468934d59f0ff0e9533907e09541
BLAKE2b-256 272ee02c18d038411cbc172be486d379db72293dacc9041a9536faafab8f2e31

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp36-cp36m-musllinux_1_2_i686.whl.

File metadata

  • Download URL: fill_voids-2.0.7-cp36-cp36m-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.7-cp36-cp36m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1c26dd0618653d52f13bf44f50835dff02a2e7a70a3792a2733131b66cbef28a
MD5 e5d735f658c560a7b99aec32d8ab7d16
BLAKE2b-256 c47b5bf9031038ec46162e1dea5aa65d82121fe64e4985fb86f7574164a0cce5

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1217845133e2d8878afe6be34fc7556b48352bd8483ecc110ecd74fbd60f030f
MD5 f211e054025b35d66cbc4fe06ca52c80
BLAKE2b-256 10ece10547fc484278ca84989563fff8718fabe175d6f7b55eb60d785a33b01f

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.7-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.7-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c9a244f244abdbe96aadd2ee388242899b19aefe9c7a0ab0ca64063243e68dce
MD5 f58ab34d43eafeb78dfc97c7249e9d94
BLAKE2b-256 75fa9be3ca38ebc2c573cf0aea9a2be04aa7b98594d2a1fed0961827c1629314

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page