Skip to main content

Fill voids in 3D binary images fast.

Project description

PyPI version

Fill Voids

# PYTHON
import fill_voids

img = ... # 2d or 3d binary image 
filled_image = fill_voids.fill(img, in_place=False) # in_place allows editing of original image
filled_image, N = fill_voids.fill(img, return_fill_count=True) # returns number of voxels filled in
// C++ 
#include "fill_voids.hpp"

size_t sx, sy, sz;
sx = sy = sz = 512;

uint8_t* labels = ...; // 512x512x512 binary image

// modifies labels as a side effect, returns number of voxels filled in
size_t fill_ct = fill_voids::binary_fill_holes<uint8_t>(labels, sx, sy, sz); // 3D

// let labels now represent a 512x512 2D image
size_t fill_ct = fill_voids::binary_fill_holes<uint8_t>(labels, sx, sy); // 2D

Filling five labels using SciPy binary_fill_holes vs fill_voids from a 512x512x512 densely labeled connectomics segmentation. (black) fill_voids 1.1.0 (blue) fill_voids 1.1.0 with `in_place=True` (red) scipy 1.4.1
Fig. 1: Filling five labels using SciPy binary_fill_holes vs fill_voids from a 512x512x512 densely labeled connectomics segmentation. (black) fill_voids 1.1.0 (blue) fill_voids 1.1.0 with `in_place=True` (red) scipy 1.4.1. In this test, fill_voids (`in_place=False`) is significantly faster than scipy with lower memory usage.

This library contains both 2D and 3D void filling algorithms, similar in function to scipy.ndimage.morphology.binary_fill_holes, but with an eye towards higher performance. The SciPy hole filling algorithm uses slow serial dilations.

The current version of this library uses a scan line flood fill of the background labels and then labels everything not filled as foreground.

pip Installation

pip install fill-voids

If there's no binary for your platform and you have a C++ compiler try:

sudo apt-get install python3-dev # This is for Ubuntu, but whatever is appropriate for you
pip install numpy
pip install fill-voids --no-binary :all:

Current Algorithm

  1. Raster scan and mark every foreground voxel 2 for pre-existing foreground.
  2. Raster scan each face of the current image and the first time a black pixel (0) is encountered after either starting or enountering a foreground pixel, add that location to a stack.
  3. Flood fill (six connected) with the visited background color (1) in sequence from each location in the stack that is not already foreground.
  4. Write out a binary image the same size as the input mapped as buffer != 1 (i.e. 0 or 2). This means non-visited holes and foreground will be marked as 1 for foreground and the visited background will be marked as 0.

We improve performance significantly by using libdivide to make computing x,y,z coordinates from array index faster, by scanning right and left to take advantage of machine memory speed, by only placing a neighbor on the stack when we've either just started a scan or just passed a foreground pixel while scanning.

Multi-Label Concept

Similarly to the connected-components-3d and euclidean-distance-3d projects, in connectomics, it can be common to want to apply void filling algorithms to all labels within a densely packed volume. A multi-label algorithm can be much faster than even the fastest serial application of a binary algorithm. Here's how this might go given an input image I:

  1. Compute M = max(I)
  2. Perform the fill as in the binary algorithm labeling the surrounding void as M+1. This means all voids are now either legitimate and can be filled or holes in-between labels.
  3. Raster scan through the volume. If a new void is encountered, we must determine if it is fillable or an in-between one which will not be filled.
  4. On encountering the void, record the last label seen and contour trace around it. If only that label is encountered during contour tracing, it is fillable. If another label is encountered, it is not fillable.
  5. During the contour trace, mark the trace using an integer not already used, such as M+2. If that label is encountered in the future, you'll know what to fill between it and the next label encountered based on the fillable determination. This phase stops when either the twin of the first M+2 label is encountered or when futher contour tracing isn't possible (in the case of single voxel gaps).
  6. (Inner Labels) If another label is encountered in the middle of a void, contour trace around it and mark the boundary with the same M+2 label that started the current fill.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fill_voids-2.1.0.tar.gz (3.2 MB view details)

Uploaded Source

Built Distributions

fill_voids-2.1.0-cp313-cp313-win_amd64.whl (174.4 kB view details)

Uploaded CPython 3.13Windows x86-64

fill_voids-2.1.0-cp313-cp313-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

fill_voids-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

fill_voids-2.1.0-cp313-cp313-macosx_11_0_arm64.whl (184.8 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

fill_voids-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl (201.8 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

fill_voids-2.1.0-cp312-cp312-win_amd64.whl (174.8 kB view details)

Uploaded CPython 3.12Windows x86-64

fill_voids-2.1.0-cp312-cp312-musllinux_1_2_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

fill_voids-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

fill_voids-2.1.0-cp312-cp312-macosx_11_0_arm64.whl (185.8 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

fill_voids-2.1.0-cp312-cp312-macosx_10_13_x86_64.whl (203.2 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

fill_voids-2.1.0-cp311-cp311-win_amd64.whl (194.9 kB view details)

Uploaded CPython 3.11Windows x86-64

fill_voids-2.1.0-cp311-cp311-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

fill_voids-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

fill_voids-2.1.0-cp311-cp311-macosx_11_0_arm64.whl (193.0 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

fill_voids-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl (217.2 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

fill_voids-2.1.0-cp310-cp310-win_amd64.whl (195.0 kB view details)

Uploaded CPython 3.10Windows x86-64

fill_voids-2.1.0-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

fill_voids-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

fill_voids-2.1.0-cp310-cp310-macosx_11_0_arm64.whl (193.9 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

fill_voids-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl (218.1 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

fill_voids-2.1.0-cp39-cp39-win_amd64.whl (195.6 kB view details)

Uploaded CPython 3.9Windows x86-64

fill_voids-2.1.0-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

fill_voids-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

fill_voids-2.1.0-cp39-cp39-macosx_11_0_arm64.whl (194.6 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

fill_voids-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl (218.7 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

fill_voids-2.1.0-cp38-cp38-win_amd64.whl (195.1 kB view details)

Uploaded CPython 3.8Windows x86-64

fill_voids-2.1.0-cp38-cp38-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

fill_voids-2.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

fill_voids-2.1.0-cp38-cp38-macosx_11_0_arm64.whl (196.8 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

fill_voids-2.1.0-cp38-cp38-macosx_10_9_x86_64.whl (220.3 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

fill_voids-2.1.0-cp37-cp37m-win_amd64.whl (200.6 kB view details)

Uploaded CPython 3.7mWindows x86-64

fill_voids-2.1.0-cp37-cp37m-musllinux_1_2_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.2+ x86-64

fill_voids-2.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

fill_voids-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (228.6 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

fill_voids-2.1.0-cp36-cp36m-win_amd64.whl (213.0 kB view details)

Uploaded CPython 3.6mWindows x86-64

fill_voids-2.1.0-cp36-cp36m-musllinux_1_2_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.2+ x86-64

fill_voids-2.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

fill_voids-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl (224.9 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file fill_voids-2.1.0.tar.gz.

File metadata

  • Download URL: fill_voids-2.1.0.tar.gz
  • Upload date:
  • Size: 3.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.0.tar.gz
Algorithm Hash digest
SHA256 63f76f7dbdd8cb5f30ea2841a31624eba4612d91211d6ff74d2317f44d449860
MD5 99c6a47a1f4af4b577f4f893d69647c3
BLAKE2b-256 5409b343711386260629ad6b3d2d92bb0c9d45bbc09e1af11ea335b11a659639

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 174.4 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 95bed804c6f8db0b5f197551ef1c6eff5cc8a484c4e5b322d0cdde5e1a798cce
MD5 c95578b216d2ec73b12ae3a838aaa6ab
BLAKE2b-256 573bef7a2e943a6476d1cb8066a65b119f8c4155829198f615110088172c7fed

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ad8772158f0cb04e919a2c6cb1affa5c54b44a3387591211ae362373e818d6fa
MD5 2f82c10de427135030939344df6c9789
BLAKE2b-256 4c12d2d8aba683db8207ff27a0cceebb63f0429e8de94510c8498efd83ebc7df

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de926220ebbe48180fcc3f52ff888b1f3ab15d90bb33bae462d3e356f04e6278
MD5 79dfd50a177f34189a84d3232da01fa9
BLAKE2b-256 6c6384b0a6b9957af6c0c28969893e5ce04eb4d9d09bbf1eb0ea9449514cbb74

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a4cb5b90047d6fba68be447d2a044791948785224ccad889ecf79d7b23bee69a
MD5 a6739855d52f5fa9a193cefc54be802f
BLAKE2b-256 9afd0eba467f4feed477cde474938be81f4f3fd005c848614bbefb4bc9eedf07

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6e65b229607687b9caf951f1840d6c8a471803972804eb9135f42f1435c8cf99
MD5 a93a563d3a1178f738f60f0be40970e6
BLAKE2b-256 7088aa943d4ad9c08eb0f710f418086807920cfe23d9af38152b36b2e3733176

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 174.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f58fba5c6c91e19bd0f085a2b3b3fdeb1630520aeb2b3835b483082aea98c81b
MD5 a54ca5c70573eda578cd743cb0f0e2e1
BLAKE2b-256 371b76af886bbafc43fb323e30428d78ae27b34f6f28b7908e09338351b05484

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 700f7b32a4e347977bf3748c7099f36b4f8c241d74c4bafa2ac6082f8660a736
MD5 84353538b41bc2e1b56522a21ebad583
BLAKE2b-256 51c3d3f00f6b5ebff5f9e2e88cce6f84e8f0439919066cb09f2e491608a3640e

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 527a239eb6a4eb3bff5b082ed348aacc896befc922ebcab87cde9f2d60dd6166
MD5 5fca3b0ab20e2c7d05121c9247d402df
BLAKE2b-256 dbe21c5a22043275691813ea8c53f3ad67839f7ab7ed316b34bc24444f93dafe

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f6aecb6322c813be663e03ef81ee1249e4ff73633f3161aa477d052e8a4de7cd
MD5 975e43f6031040160131c808bc110007
BLAKE2b-256 43119f33d24dd4ce38e5913c6ce7356dafec40496177d582ee81c3cc7ca65a7a

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fa743866d35e7686af9cb1f56f4d950514e78a49221c29ef2da2044c614e2939
MD5 a7b7188866c897df83f9a83f9b3644d1
BLAKE2b-256 fef59951559902d7c5ae99d4909c830cfa45c498f1b33c3d994dadb8c59950e1

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 194.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7e5b1608d71b2525c530e29afa9a0011ae8fce89cdf96d7ac96c4db58951b779
MD5 7297608cad54b1092dc7f94e21b8751e
BLAKE2b-256 88a1777f920610614651cdc3205b156526390bbf07a41a6f0e6b2363066e83e2

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8fd2f56b6049c5fbcf0bfc4f4eb32f9fff9753b1869337b94f6c576a70582dca
MD5 d830cc26b661c85fcecce58620cf7c5e
BLAKE2b-256 083f05d4cf33dfff29eaa262f618682fb0c50b093b6be2ce66e3494e497507f4

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab43da5668308eca38908cf5248ba82899726e611415be711b8f7509167df027
MD5 b62476ce286d24abc4ea45528db924b2
BLAKE2b-256 a0301db80bb282aace17baa002a327ace11bf0776caed80a2d1f9177bdec8507

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9733df445b4efaa907c0ba15ba07499711e0d2543dcfc9fd304ee4ef3666d76e
MD5 94ee9c6403d28ad74636e892d48d17f0
BLAKE2b-256 306c2a007f9d4e88eb814895518a96d5439bcf32f66c2b8101ee9276fed3deee

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6f26a660d76303455c1e96517853d2bafbe8f5259d29e37f198ef16f935f17c8
MD5 df3b4d909e4b5c15ee1b2bbe518488f7
BLAKE2b-256 bb09b5aae47287f007336e9dedc1a7a816363805c80c9fde8f221334c4b9e268

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 195.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6847a8b41a56087acf32e6777c6a231a609e3b88bee858821ba88120b317619f
MD5 68d43200e59f391639dc7dff84a91ff7
BLAKE2b-256 2dda04493f65df8cc564d7b6d1ff91612ed38473f9f08b5fc3bbdfca14f02567

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f1a069c3ca6eefbe7b73080631feb93c6b34909eb79255e853832730f5cee92a
MD5 27011e01eee836a390b15ad650e9084c
BLAKE2b-256 56ae3b8e276ec15c9ba05f9538ceae34ee006fa206f4e3051c61001470e376c4

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3375478f5fe2d6e43a4a518320af9d7223a7dcef9535d23a6b94efcd4e9508b
MD5 04aa3f93cc56e4339b6471b1e77ff00b
BLAKE2b-256 1dda9982db95b435813fc632c1f9252a71b400742fa15d0a9ee22186bff074f0

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7f861ffca9c7cb26093e12d1a2ce66c719769630634480d59c33483145a6606e
MD5 b5e22c8f2c4d5959880630e814dba18c
BLAKE2b-256 e3793e96b307785777189777297ae131822e3211338dec8e5d37f56ea2b39abf

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 194e5c714fbf9019b736b0e334c02956bb6622d8a679520e685a8f305a9854e4
MD5 878fb802c01237c4092ed4b45ace169d
BLAKE2b-256 bb9a2fbdd5b79d7c4a6945f23cbbddce81e6f4eb4a204b154a0d144044bb2144

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 195.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 353347b211bd9d13f22feb1b97444d11e2fff5d925f639ffeaec3fa574d00e52
MD5 a6bdcdfa6bc56fa58b257d85f48e5094
BLAKE2b-256 c50b150504796435f50665666ec1e36c55ac97a522b5ea3197449c25947db92a

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 626fe211f64b6857f6c2c536f0af9090fb17d215c95f6d5b6e0e7c4553184157
MD5 b6c9090957edc862605ee59bc125a6b6
BLAKE2b-256 18aa783d7e39326142358eefbc4e3c3dd0739e6a1a3f90b8fb2758a57b03ed73

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 402bdb3f5dc7a37daf9d14a27e121fcb32d15ad70d8bbc20fc096aab000771cf
MD5 d3d317c64dc5abd494c32d176628bc95
BLAKE2b-256 c977e203a6586e4d5d7295eb1b50ed6538ead7b676a88f0e2421e8e6357928fe

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b5fd57f67ba3333b7ad97a3d4d1879d410788a52f3b5c351b4d959c512cfc30e
MD5 0fb2ce288f10a36349f4c21a83dbee79
BLAKE2b-256 483c5384bbe3483bf327bc107e6ecd81c1174d50dc3ce9b6dfdeca5fd755fa8f

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 be2f6493bfa740f0e8ce4daf1b69cb0385d4590b3ea0b7c3ef14cc6cc8ac120a
MD5 e0dfdd669a8ea491bec2d4dfb3c603f3
BLAKE2b-256 e97b729ae8ac16b68e2e053a26567e74be401277fe2b1c8051f3b6b16ebbaf8d

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 195.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6b9aa23743ac0131deae4e6a03e2b6afa189f4100622bef13182654bcb38892b
MD5 fca7283ab0da59b2924ab7e8a3d52128
BLAKE2b-256 705478a3a007f98c90974b21af0ddac05891a4a120ab28159f0f101c1a6b486c

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c062dcf80409168fbf79a8897f4a8385240db1887a0e9a5a1d37716c719e50f9
MD5 5fd6dd3a686d521b353628913f80a0e5
BLAKE2b-256 21e057c52b665e09e1796ab626842cfb708a982089546040cf27b401a5a876f8

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d7b8678a62bd9a8c449320f1b38c8fc17b6a7a499725fb3b23af1a3a7d3923f
MD5 b887db4e1c22c38c2522e8a814d71ccb
BLAKE2b-256 1c4a705e000c1328562a4b745a1a20cd9e2527761853f787ccb4d5db4d764d9e

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54115830b5df463160fdf88a9720d63d8a9354731be8083e1510173932eb6fb6
MD5 8edfa192b4ba2f8fe5d324e9917d35a2
BLAKE2b-256 d18aeb158eb32edbbc8b2505c5ece7b2cd65facf4fc1bf282fab3cc61ba34b1f

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 86997629e29d6758f62568f4b85ea8125bef1ffd7ae5bd1dcb51503b887dd33d
MD5 97fe1cb99d495d1a575189745efc9774
BLAKE2b-256 c2a3744360952e2b9972cb5414cd420f4da88e0af51691c174dcf0653a4e73d2

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 200.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3efd34ed50e966c59126b8c95597132470e47852b8199a33980c67f7785097a7
MD5 93690fc492a716a0f0dbb6a5b8c2f3ca
BLAKE2b-256 584970917dedf27444ca204bf82d328c66b0d6de5848296771daf72accfd92ea

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f6b3e965cfd2109507b060cff7359d58576392c4aadb55848495804455107a3b
MD5 2131504bd062ea40f8ed55f9e66eb67f
BLAKE2b-256 e59483c47d3f588bdf1faffbf89d259c317678ada7ccb38fdfe34227d18a03cb

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3c0a1c543fe7fa90659ae37a23cb0abe4af088b253655805e797bda40126e8f
MD5 f4dfb7ed1509947c35d050e1fc9614ec
BLAKE2b-256 49f978fc4fb6d93c20919a8630dd265058838f2fcbf498c51e5ad4511fc2a7c7

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c7bd258feb37d36aced6f81c7ab5de4fe54d7d1315c029e7a460eb85d8c0893d
MD5 401949cb479317d788b8f3814091c0cc
BLAKE2b-256 7c78234844d8dfe3fa7798de9c66d308e559cce6dacb1df647490863d741f660

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 213.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5baeeb3d1e68e066ec62a6d727b26b410c8ab6a9579512dc143ef3996080cf9d
MD5 b323f0b55aeb4e6bc849880c63fa12d8
BLAKE2b-256 09b188db38f6f256c3b360e1a6b65409fb1e5a8102de7acfd46eeb0ae00cc4b4

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp36-cp36m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp36-cp36m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fd2241baeba13cd5bd89d7f9d8f735b73d0b218535307bb102d72144e894e03a
MD5 f3c38400da3aca9b0a34612521c14e5a
BLAKE2b-256 f6a5084d0bcf70d36ec23456a74015e9dfa43cc7152b2b489e1c81302f50de54

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f91fb496ab4fcb655b5c77a6ffc73ea7fddd70b7d4c8394a988176d4bdf29e5
MD5 c5a33dc8793df9c10dc3347b390e9304
BLAKE2b-256 198c8b20193d4dc1adec60eb26f69f4c3c42d6ad0c53a12115034bb31827abfd

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 51862078d440e43001e233a089b0b486a0a55c6427384539ddafe4a493014cdc
MD5 c2ccc3af26790d2c07e26d648b74124b
BLAKE2b-256 8157841c28ccd2a9cc2126fbdb14790df63bae4e806319ae41a3ff6a32fb46c2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page