Skip to main content

Fill voids in 3D binary images fast.

Project description

PyPI version

Fill Voids

# PYTHON
import fill_voids

img = ... # 2d or 3d binary image 
filled_image = fill_voids.fill(img, in_place=False) # in_place allows editing of original image
filled_image, N = fill_voids.fill(img, return_fill_count=True) # returns number of voxels filled in
// C++ 
#include "fill_voids.hpp"

size_t sx, sy, sz;
sx = sy = sz = 512;

uint8_t* labels = ...; // 512x512x512 binary image

// modifies labels as a side effect, returns number of voxels filled in
size_t fill_ct = fill_voids::binary_fill_holes<uint8_t>(labels, sx, sy, sz); // 3D

// let labels now represent a 512x512 2D image
size_t fill_ct = fill_voids::binary_fill_holes<uint8_t>(labels, sx, sy); // 2D

Filling five labels using SciPy binary_fill_holes vs fill_voids from a 512x512x512 densely labeled connectomics segmentation. (black) fill_voids 1.1.0 (blue) fill_voids 1.1.0 with `in_place=True` (red) scipy 1.4.1
Fig. 1: Filling five labels using SciPy binary_fill_holes vs fill_voids from a 512x512x512 densely labeled connectomics segmentation. (black) fill_voids 1.1.0 (blue) fill_voids 1.1.0 with `in_place=True` (red) scipy 1.4.1. In this test, fill_voids (`in_place=False`) is significantly faster than scipy with lower memory usage.

This library contains both 2D and 3D void filling algorithms, similar in function to scipy.ndimage.morphology.binary_fill_holes, but with an eye towards higher performance. The SciPy hole filling algorithm uses slow serial dilations.

The current version of this library uses a scan line flood fill of the background labels and then labels everything not filled as foreground.

pip Installation

pip install fill-voids

If there's no binary for your platform and you have a C++ compiler try:

sudo apt-get install python3-dev # This is for Ubuntu, but whatever is appropriate for you
pip install numpy
pip install fill-voids --no-binary :all:

Current Algorithm

  1. Raster scan and mark every foreground voxel 2 for pre-existing foreground.
  2. Raster scan each face of the current image and the first time a black pixel (0) is encountered after either starting or enountering a foreground pixel, add that location to a stack.
  3. Flood fill (six connected) with the visited background color (1) in sequence from each location in the stack that is not already foreground.
  4. Write out a binary image the same size as the input mapped as buffer != 1 (i.e. 0 or 2). This means non-visited holes and foreground will be marked as 1 for foreground and the visited background will be marked as 0.

We improve performance significantly by using libdivide to make computing x,y,z coordinates from array index faster, by scanning right and left to take advantage of machine memory speed, by only placing a neighbor on the stack when we've either just started a scan or just passed a foreground pixel while scanning.

Multi-Label Concept

Similarly to the connected-components-3d and euclidean-distance-3d projects, in connectomics, it can be common to want to apply void filling algorithms to all labels within a densely packed volume. A multi-label algorithm can be much faster than even the fastest serial application of a binary algorithm. Here's how this might go given an input image I:

  1. Compute M = max(I)
  2. Perform the fill as in the binary algorithm labeling the surrounding void as M+1. This means all voids are now either legitimate and can be filled or holes in-between labels.
  3. Raster scan through the volume. If a new void is encountered, we must determine if it is fillable or an in-between one which will not be filled.
  4. On encountering the void, record the last label seen and contour trace around it. If only that label is encountered during contour tracing, it is fillable. If another label is encountered, it is not fillable.
  5. During the contour trace, mark the trace using an integer not already used, such as M+2. If that label is encountered in the future, you'll know what to fill between it and the next label encountered based on the fillable determination. This phase stops when either the twin of the first M+2 label is encountered or when futher contour tracing isn't possible (in the case of single voxel gaps).
  6. (Inner Labels) If another label is encountered in the middle of a void, contour trace around it and mark the boundary with the same M+2 label that started the current fill.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fill_voids-2.1.1.tar.gz (3.2 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

fill_voids-2.1.1-cp313-cp313-win_amd64.whl (181.7 kB view details)

Uploaded CPython 3.13Windows x86-64

fill_voids-2.1.1-cp313-cp313-musllinux_1_2_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

fill_voids-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

fill_voids-2.1.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

fill_voids-2.1.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

fill_voids-2.1.1-cp313-cp313-macosx_11_0_arm64.whl (201.2 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

fill_voids-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl (220.1 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

fill_voids-2.1.1-cp312-cp312-win_amd64.whl (182.1 kB view details)

Uploaded CPython 3.12Windows x86-64

fill_voids-2.1.1-cp312-cp312-musllinux_1_2_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

fill_voids-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

fill_voids-2.1.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

fill_voids-2.1.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

fill_voids-2.1.1-cp312-cp312-macosx_11_0_arm64.whl (202.3 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

fill_voids-2.1.1-cp312-cp312-macosx_10_13_x86_64.whl (221.2 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

fill_voids-2.1.1-cp311-cp311-win_amd64.whl (197.4 kB view details)

Uploaded CPython 3.11Windows x86-64

fill_voids-2.1.1-cp311-cp311-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

fill_voids-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

fill_voids-2.1.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

fill_voids-2.1.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

fill_voids-2.1.1-cp311-cp311-macosx_11_0_arm64.whl (206.9 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

fill_voids-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl (232.1 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

fill_voids-2.1.1-cp310-cp310-win_amd64.whl (197.5 kB view details)

Uploaded CPython 3.10Windows x86-64

fill_voids-2.1.1-cp310-cp310-musllinux_1_2_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

fill_voids-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

fill_voids-2.1.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

fill_voids-2.1.1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

fill_voids-2.1.1-cp310-cp310-macosx_11_0_arm64.whl (207.3 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

fill_voids-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl (227.6 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

fill_voids-2.1.1-cp39-cp39-win_amd64.whl (197.8 kB view details)

Uploaded CPython 3.9Windows x86-64

fill_voids-2.1.1-cp39-cp39-musllinux_1_2_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

fill_voids-2.1.1-cp39-cp39-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

fill_voids-2.1.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

fill_voids-2.1.1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

fill_voids-2.1.1-cp39-cp39-macosx_11_0_arm64.whl (207.7 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

fill_voids-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl (228.0 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

fill_voids-2.1.1-cp38-cp38-win_amd64.whl (201.0 kB view details)

Uploaded CPython 3.8Windows x86-64

fill_voids-2.1.1-cp38-cp38-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

fill_voids-2.1.1-cp38-cp38-musllinux_1_2_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ ARM64

fill_voids-2.1.1-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

fill_voids-2.1.1-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

fill_voids-2.1.1-cp38-cp38-macosx_11_0_arm64.whl (211.1 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

fill_voids-2.1.1-cp38-cp38-macosx_10_9_x86_64.whl (234.3 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file fill_voids-2.1.1.tar.gz.

File metadata

  • Download URL: fill_voids-2.1.1.tar.gz
  • Upload date:
  • Size: 3.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.1.tar.gz
Algorithm Hash digest
SHA256 469f543e4ab236cf11aacef106af8e73c730f2a90f1bfae760dc8de29d4d6634
MD5 415d447aa04d98d60ab707b223f86ce7
BLAKE2b-256 f0116dff4280502b81e92a69442d6d82a343610192ccbc2638ab921ffc273505

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 181.7 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 976f6a3c5a68f3f3483da779d8c71f11e8e3eec4c104d0d594ba5cd11a36a7fa
MD5 4151a98da1e0c2e1b0afd91e042b6808
BLAKE2b-256 b124f4ed44e103ee7ec9880c43bb06a9d60eab5f06d80022f83005c67304655d

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 482be2391309afa8bee93a6e8ba07bfed453a730fe557c2c0a99a620aba7bb4e
MD5 f7f9e4654d48df5e1833de92c5b44710
BLAKE2b-256 5f369b587d192ad130ade9bb53ef3dcda3d4bd60774ef4921ad9062bc9263300

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4edf017a09c89b8ea1dc386cf1078b6ea4757dcdadafc0874cd4b4e88c592e95
MD5 38692d5420b987a2e4c2be72c82156ef
BLAKE2b-256 d6361b8da040a18116c95fb732dec0282d502839953cd4affa89636a261abad4

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2da7adb953fd35ba9757d78f95c3ecd3fc6e762e5ae35ccdd69c0562b5ce2cd4
MD5 000e3543f6858c28169497933125f361
BLAKE2b-256 c0edeb4690aab1158008f3f79d53001990972cd56033f062c429a9a92ead55e8

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 96132967d7cf392804b7bdaa298643271ff738baa4355e5791c2e0b28f861e74
MD5 a1d0a04f54b94d61b3d0c5119aa72d39
BLAKE2b-256 1aa42d0576917aed75cee755a13352b3673dfac5e1329eca9bdcbf063881acd2

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f6ffc9df8dd8454e8546ea8255a3aef8be14e6750133f80e4488942e5184f554
MD5 c84697c67c699a836853a5ad5424f5bb
BLAKE2b-256 ede7a6e906a66622708ab40c290709934fa316ca09811da265697b86b0c75155

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 cc0db7f6c8d104fc06095881aaee574a3ec41253305331584e517063b58a2fde
MD5 3493368283318bcb10e565f3e2dc881e
BLAKE2b-256 cf339e88a57eb5a8db4af3e0c0627899ad27d15f9f302346af080cbe08c4461f

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 182.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3a1f4270b79579018e26bb86768bc10cb88de71165f3fad7cfd95189e696bb87
MD5 49562c7fc590d7a3d216904b721da823
BLAKE2b-256 30d401519d8bca0d6c2f5c0607ba8766ffe8c32b8b6479de9183639c458d9490

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a6695b7c631af6e489e3c29c218d730a62580971134b6afabb2927ffe2f7ce2a
MD5 9416c71e75294069fed87d11bf927daf
BLAKE2b-256 163495c16ce354343df8784c26fb73cae4ada7f127231d9188dab2660c2e48fd

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 93d5564cbdcb47fdd762de809bc59ebbbd9d954aabdc6700e3176f7cee566554
MD5 a5f442573809b9d8111efa92a3909982
BLAKE2b-256 22e59b86debfa47242cebd8a70dfc0ca78ab3a74b687ac52676f31721ca5f75d

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f85e59e1f5dc34144fa10c79331b5c816071db74a055e563e1b429bd5180f4ed
MD5 5040614e538fe8175585459c1b08c863
BLAKE2b-256 404e60862a12e896d9a58c18ca2b12428d464be36fcebb316cf55e92dd92d1b1

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 877ee4cf7f172dba2a024dd2476b921e48a29095331a738edb8aea353ce59482
MD5 9cccaa41c409821d6fabe2b75da18d33
BLAKE2b-256 2f986a871ecf522327424145e75e0e68d16164da3f3252c033e69ca684682cc1

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 593bb349ba0c4aba2bcf837958c3a4c4d492949424dfdd1ad7152fec40d38e8e
MD5 7181da782f169f69c810a805d4b5f676
BLAKE2b-256 565a2936501b109b517ee5ebf65666f87c9051e98b17066de5dff7d59a96aadd

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6fe58c8d7bda3537556b31e01d277e1a009d78a658eb62c7a295b650a1a42ffd
MD5 9ff64f3ba2353b59d77bae28d6f01fc8
BLAKE2b-256 131f08164e5d3a9d0f26f247c520fa3adb8f7d5f5ea15d7f7a9929752aa1d10c

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 197.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cd3e21ce337bd2eabb08ea423da5ebd215abba1f7e0174f41fbc4f4b82feec85
MD5 8b2083b15c03fd95f8f1e41390a656ad
BLAKE2b-256 a6b8d33df66e9c0e637439421d7c2331f913b3374803971df5b0af067d5a6bed

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c31d529bc46d0b17328044b51a98d9773c2453c0f7daac37743ada70944269b2
MD5 f803e3ce0540ca78dfd4f72f9f2de1ea
BLAKE2b-256 33c18cfe49f4d97e5f870a5605f84c93449a6ff8b71f9fee022badf6f28d3c27

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 128d29c0e49bceffb748b3b35f174377b4b05da4be65e6ccfe436047924ee858
MD5 e62205e8d1b74c232a6038ec46b3a08a
BLAKE2b-256 f9cc98110bf6f916e3c82e8923b8cb9e55272ede6b2028c01117b4c2a2ddeb33

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6aac94f1a70886edbde7ea1d44b60d36d7a86bb149072c069c3e53b43f3d89d5
MD5 dd22f043e24b9c3992aa0017892b281f
BLAKE2b-256 6e381c53fe0bf6a667511c93d2e634f7a5ebf8144e3d274fbcca921bd8c0e216

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4dc3e9cb3acceb6834b2149b8ae2e8d76cca3cf7cfcc255200881fbbef54177a
MD5 487c520dcc49338542c44fc8d7f43bfd
BLAKE2b-256 2fb18e6457707b2a7806d5c50be08950fcfb54d1e929effdbc8c5b7563015359

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ec9ab0e107d9e876a580f9b954b1029fc20322158c80b2f5d925ee67236e88c9
MD5 4fe3d4e31bbc8f92bcc3831458a7d67e
BLAKE2b-256 9e1e0e23cbcf1ad4980a8a9834037c268fb95ac63db0d4f7fa9f4472e4dd8d82

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d866876f0d692b6b6d0fa5a6d42cfb62696b048286a28866d2e0fe728fb83070
MD5 7fd69f071098872dbe19adf7658d91f1
BLAKE2b-256 038b70d8d8c54b42657ddc01c81fda9c326600e606161c89599809e453827861

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 197.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3dc17ccef0f7fdfee457cb0b33b16e70eedc80f0fa2a29c447991bdb64e2ae87
MD5 5f543f8fe2718b152d21d4c39fc002d1
BLAKE2b-256 5a5c6cc051d4c7a4cb3ead14fcb95da599cf19b300434d82445e7bd72b535862

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 eb3a7d9c25c790ae17f3a4b7853d060c79bf73428ce44deecc1cc4e66ce81fab
MD5 aba48674c7523274af6ce3a972163482
BLAKE2b-256 87e308abadba96c7b2a7e679d04852f049e4e0db459eb41d6bc8c7af9e280a45

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e9d4e76c565458568242ca97d0719199bb61781152b5fec8eed033c89bed1bc5
MD5 97e48f121602f554d2a73ddbb2c6483e
BLAKE2b-256 d2ff773b31f59d83bc91be9ee846d8901013523ec822c4caf76b144254172dd0

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9f40c9f7dad4eff48d915f9e0e1d56828a99d981f02a44dba0723b054f7a70d2
MD5 b8d7600e0f229be07ca5d9dbaea727ba
BLAKE2b-256 2062139f190b61784ebdf1d7b9f8084603d164fa0a7fc5eb85ea5ddd04398c9c

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5209dc9112d144763b0054460570f3f1dd2d19ed485401def8cbd0d7dc25fbf8
MD5 c1dd1f4ff30a8db3bb92f01a1d9a75ca
BLAKE2b-256 abebc325d980f98643f500f872b9fcd35e428384757fd9f46cb19b3fac30cce5

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 98c70d3c372e7d54a3ce462d8828c42d00232e88f01b5c62ce78551dba99436f
MD5 4576dd974db3f6be3129995e3429dbd5
BLAKE2b-256 50e9c9a60269b58527845672cf97d668d441ba8250020d047ab60c3989101313

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 82c05c8a86bbd1e6e2047358ce6ad6722c2fb42a10fa0288749a939104ede712
MD5 0b5083b0ec79e3a90ec45d9b1fcb915d
BLAKE2b-256 5bdbe89af150e5e599a7a85c23e4ba54c305cc287aaff16104af59c002267541

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 197.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2277380c83c2c99bf587f0c6ce000793b8469e279f348d984459ed7fbbb373be
MD5 32bf524c3536c8137d8b6222b042f656
BLAKE2b-256 4bec388d955d2995a075f09ce61e00a7e04bb2a07995da5a37aa66bb6a0a25be

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3e73c45daa5f99afba1e392b58565ed16115df79a2d26a0b975b43055202a937
MD5 ee04bf4b685a9a17223b6fc939955d0f
BLAKE2b-256 01242ee962c91f55ab1dbb87ac470f88664925e32cc8a4627694ffe6a31f30b3

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 31d603e45133db15978528c742603ce6b8bc21ed9674f206fb8ea4aa84c95f30
MD5 f7c2841dd3c9a7fdff88d4b7a750342f
BLAKE2b-256 580a714d52b7206ff65bf646b0195fc6053c4e07bc267fa82f907f19811f6346

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 17bb74d02836f4f589d8238e4f90947b015e697134e5d44d332470c2f5ad0db0
MD5 ada293ddee644f7a772bc49260897259
BLAKE2b-256 9e9ea6420bc80c6978d5ac049dc988fc28f6f9712af884c7cd3fec90e82bd99c

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a86686b9c81cbfd0dba775108e457d5688e7493bb700c03d733a427df97e228d
MD5 120d32bafb06b0a0ca5104fbb210c93e
BLAKE2b-256 3472aaea79e37a5a2444bf5c7dbff764116f16c500be83e6d14bcc87e28738e0

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36169bf4f0dcc1c9625035cdc0e4852b744fd8ddba76dee15758dc4d06e250af
MD5 3702a896e276b02d295c8c36044fe737
BLAKE2b-256 7bc095b78cee32aae1dbf20182c15c6f2afa783f8e260728957d75e2dfaa9f2b

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 232d712b5b74bf9eb362b5a9f4123d2c49ed2f08bc853f655a2cbeb60649fd06
MD5 9d5f6ba1700c23be1d6e0ae7aa8bf31a
BLAKE2b-256 4597a559139c981485a679e7d55046cd939c252f6fe276cf8e49a38498401067

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 201.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for fill_voids-2.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 51ac35c36be3936cf79c5776b6df350c812846181bfd00fd8533368337a53316
MD5 4e62534f306ea5cc73f70a0e203ca646
BLAKE2b-256 cd342501534aa48e93da387962f7cc540d82c48e84ba6623824cea1ccb306240

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d86cc722f65b26e779733b4f4012822e8588e3a066abf3c4ee07c52013b5a857
MD5 02de1d7346c8691e46ba956929cf7503
BLAKE2b-256 8de329bf4df8b72036ecadf858c157cb01747021a93e42fe798936ab445c14ea

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b388dbfe6230f8e9574c3150776a30633ca4664d9807612bd498729550e3031d
MD5 4d31e78af9620f06d529d408629490de
BLAKE2b-256 f8ac9fc6857752f32b87283a7bfa47476f2d31a6b9f0250df0a51bd14654c24a

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 baa0813101206269d00efe487f15e4f1409a984f5b892a779f51ff70e7333ff8
MD5 60f09704c679a7aa29a1466a19fd253d
BLAKE2b-256 d9d68a3417a58c6753ccecdcbf512d0a39fa62bef3ef253f6306e0faedbdb44a

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3c7353efda783eeb7579ec0363319cd9c5e7f00aa8e613d00cdf3faecd97cf87
MD5 048aadb672934bfd9df19d140c285054
BLAKE2b-256 983ba36401269597d9a582e9e16b15cac9cc738b6c406c74d856ff2ef971f224

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d27deaf237d52902f63d9e0af3a1320986d1c55c071c5831c8e38f530a1cdf3
MD5 83b4e3ef773e266be82ada4767e7cb93
BLAKE2b-256 af826e90bdc8e1d7ea86eee1058735b4f4d2b281c56578122c24cb2fef22763b

See more details on using hashes here.

File details

Details for the file fill_voids-2.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 65d56f046154873f9131694e4c80c4e4ee883bda781f22e40217730718d545b8
MD5 ed2b6410e31f058abbc220287695b45b
BLAKE2b-256 b6565043842d6d49a2a1fba82b7f6ffc905afaa580d75c91bb5d55637e6b9527

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page