Skip to main content

Fill voids in 3D binary images fast.

Project description

PyPI version

Fill Voids

# PYTHON
import fill_voids

img = ... # 2d or 3d binary image 
filled_image = fill_voids.fill(img, in_place=False) # in_place allows editing of original image
filled_image, N = fill_voids.fill(img, return_fill_count=True) # returns number of voxels filled in
// C++ 
#include "fill_voids.hpp"

size_t sx, sy, sz;
sx = sy = sz = 512;

uint8_t* labels = ...; // 512x512x512 binary image

// modifies labels as a side effect, returns number of voxels filled in
size_t fill_ct = fill_voids::binary_fill_holes<uint8_t>(labels, sx, sy, sz); // 3D

// let labels now represent a 512x512 2D image
size_t fill_ct = fill_voids::binary_fill_holes<uint8_t>(labels, sx, sy); // 2D

Filling five labels using SciPy binary_fill_holes vs fill_voids from a 512x512x512 densely labeled connectomics segmentation. (black) fill_voids 1.1.0 (blue) fill_voids 1.1.0 with `in_place=True` (red) scipy 1.4.1
Fig. 1: Filling five labels using SciPy binary_fill_holes vs fill_voids from a 512x512x512 densely labeled connectomics segmentation. (black) fill_voids 1.1.0 (blue) fill_voids 1.1.0 with `in_place=True` (red) scipy 1.4.1. In this test, fill_voids (`in_place=False`) is significantly faster than scipy with lower memory usage.

This library contains both 2D and 3D void filling algorithms, similar in function to scipy.ndimage.morphology.binary_fill_holes, but with an eye towards higher performance. The SciPy hole filling algorithm uses slow serial dilations.

The current version of this library uses a scan line flood fill of the background labels and then labels everything not filled as foreground.

pip Installation

pip install fill-voids

If there's no binary for your platform and you have a C++ compiler try:

sudo apt-get install python3-dev # This is for Ubuntu, but whatever is appropriate for you
pip install numpy
pip install fill-voids --no-binary :all:

Current Algorithm

  1. Raster scan and mark every foreground voxel 2 for pre-existing foreground.
  2. Raster scan each face of the current image and the first time a black pixel (0) is encountered after either starting or enountering a foreground pixel, add that location to a stack.
  3. Flood fill (six connected) with the visited background color (1) in sequence from each location in the stack that is not already foreground.
  4. Write out a binary image the same size as the input mapped as buffer != 1 (i.e. 0 or 2). This means non-visited holes and foreground will be marked as 1 for foreground and the visited background will be marked as 0.

We improve performance significantly by using libdivide to make computing x,y,z coordinates from array index faster, by scanning right and left to take advantage of machine memory speed, by only placing a neighbor on the stack when we've either just started a scan or just passed a foreground pixel while scanning.

Multi-Label Concept

Similarly to the connected-components-3d and euclidean-distance-3d projects, in connectomics, it can be common to want to apply void filling algorithms to all labels within a densely packed volume. A multi-label algorithm can be much faster than even the fastest serial application of a binary algorithm. Here's how this might go given an input image I:

  1. Compute M = max(I)
  2. Perform the fill as in the binary algorithm labeling the surrounding void as M+1. This means all voids are now either legitimate and can be filled or holes in-between labels.
  3. Raster scan through the volume. If a new void is encountered, we must determine if it is fillable or an in-between one which will not be filled.
  4. On encountering the void, record the last label seen and contour trace around it. If only that label is encountered during contour tracing, it is fillable. If another label is encountered, it is not fillable.
  5. During the contour trace, mark the trace using an integer not already used, such as M+2. If that label is encountered in the future, you'll know what to fill between it and the next label encountered based on the fillable determination. This phase stops when either the twin of the first M+2 label is encountered or when futher contour tracing isn't possible (in the case of single voxel gaps).
  6. (Inner Labels) If another label is encountered in the middle of a void, contour trace around it and mark the boundary with the same M+2 label that started the current fill.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fill_voids-2.0.5-pp39-pypy39_pp73-win_amd64.whl (144.5 kB view details)

Uploaded PyPy Windows x86-64

fill_voids-2.0.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (193.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

fill_voids-2.0.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (189.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (166.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fill_voids-2.0.5-pp38-pypy38_pp73-win_amd64.whl (139.2 kB view details)

Uploaded PyPy Windows x86-64

fill_voids-2.0.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (193.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

fill_voids-2.0.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (188.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (168.8 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fill_voids-2.0.5-cp311-cp311-win_amd64.whl (168.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

fill_voids-2.0.5-cp311-cp311-win32.whl (134.4 kB view details)

Uploaded CPython 3.11 Windows x86

fill_voids-2.0.5-cp311-cp311-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

fill_voids-2.0.5-cp311-cp311-musllinux_1_1_i686.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

fill_voids-2.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fill_voids-2.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.5-cp311-cp311-macosx_10_9_x86_64.whl (221.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fill_voids-2.0.5-cp311-cp311-macosx_10_9_universal2.whl (388.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

fill_voids-2.0.5-cp310-cp310-win_amd64.whl (170.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

fill_voids-2.0.5-cp310-cp310-win32.whl (134.1 kB view details)

Uploaded CPython 3.10 Windows x86

fill_voids-2.0.5-cp310-cp310-musllinux_1_1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fill_voids-2.0.5-cp310-cp310-musllinux_1_1_i686.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

fill_voids-2.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fill_voids-2.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.5-cp310-cp310-macosx_10_9_x86_64.whl (221.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fill_voids-2.0.5-cp310-cp310-macosx_10_9_universal2.whl (390.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

fill_voids-2.0.5-cp39-cp39-win_amd64.whl (171.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

fill_voids-2.0.5-cp39-cp39-win32.whl (135.1 kB view details)

Uploaded CPython 3.9 Windows x86

fill_voids-2.0.5-cp39-cp39-musllinux_1_1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fill_voids-2.0.5-cp39-cp39-musllinux_1_1_i686.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

fill_voids-2.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fill_voids-2.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.5-cp39-cp39-macosx_10_9_x86_64.whl (223.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fill_voids-2.0.5-cp39-cp39-macosx_10_9_universal2.whl (393.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

fill_voids-2.0.5-cp38-cp38-win_amd64.whl (171.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

fill_voids-2.0.5-cp38-cp38-win32.whl (135.3 kB view details)

Uploaded CPython 3.8 Windows x86

fill_voids-2.0.5-cp38-cp38-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fill_voids-2.0.5-cp38-cp38-musllinux_1_1_i686.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

fill_voids-2.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fill_voids-2.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.5-cp38-cp38-macosx_11_0_universal2.whl (388.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

fill_voids-2.0.5-cp38-cp38-macosx_10_9_x86_64.whl (221.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fill_voids-2.0.5-cp37-cp37m-win_amd64.whl (163.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

fill_voids-2.0.5-cp37-cp37m-win32.whl (133.0 kB view details)

Uploaded CPython 3.7m Windows x86

fill_voids-2.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

fill_voids-2.0.5-cp37-cp37m-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

fill_voids-2.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fill_voids-2.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.5-cp37-cp37m-macosx_10_9_x86_64.whl (214.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

fill_voids-2.0.5-cp36-cp36m-win_amd64.whl (176.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

fill_voids-2.0.5-cp36-cp36m-win32.whl (141.5 kB view details)

Uploaded CPython 3.6m Windows x86

fill_voids-2.0.5-cp36-cp36m-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

fill_voids-2.0.5-cp36-cp36m-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

fill_voids-2.0.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

fill_voids-2.0.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fill_voids-2.0.5-cp36-cp36m-macosx_10_9_x86_64.whl (214.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file fill_voids-2.0.5-pp39-pypy39_pp73-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-pp39-pypy39_pp73-win_amd64.whl
  • Upload date:
  • Size: 144.5 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8ea3b8309e9f71b6e7cd28cfbd75b9c889a2f4e4cf94cb1437b127bd12581f95
MD5 66efeeda4657efb81f0a154811a627aa
BLAKE2b-256 5ab7919888d6b3c1caaac8ed2385efb2b173dd685f127603737218949fbaffa4

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 763192be5c0ac028880903e95d27864c0603f2c3388c534a2a6081f56f36d9c7
MD5 0211ce6c7ea38c3508dacfa6cc78426b
BLAKE2b-256 9f36c7001eb01bdde62e7399c094018666d05a42118bb69be03775aff23ab302

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 209aec9be8d68f548129a6f25963260b941b4c1e02923eea02b2185905e1394c
MD5 c8f7392c9b2974846847fe990367565e
BLAKE2b-256 a4880010e461211476cbe504459b99b809c2e6357e3375445632354626108c9e

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 166.6 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f6c20c84d9946cfe1d185e7a94cd2edfe0861096037cf77e6711f49023243767
MD5 2515402edec5ceb2008ae3805ac15559
BLAKE2b-256 78d30364f3ab985be2fe9800361cfd3e58ba7c10608857208ca071029caa58a7

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 139.2 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 11483feff7b9304d2af34309d41ffd1e9b1d1497376b50af83144bdf2fcb0268
MD5 c735211e3f51e154dfda5e435f15767d
BLAKE2b-256 18d2b847023ae0c7b22d20f689340a117d0fd747f7829605ea71de95d28e4bdf

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd7619b5f820a2d0b48bf1551e928e52488c10aa77ea84da64ffcfc9dfd6bf7b
MD5 4a74934a3ad762a183ecfcc2a15820db
BLAKE2b-256 e7aaeb4e5c5351486da4595022fb0e07f84431bcb03102b78c4d75722e8fbd2b

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0f93d9c2608dfd6137c3f4470c883e682c927505e462bd493220267eef9ab0e5
MD5 62fbd9113cd4d52eedfddad88552c70d
BLAKE2b-256 a2a4a652314f5397a44677d28478f1b6562af5b3ed153b9d93288e9f3d9a77b0

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 168.8 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4cc012cf7826c1e7eece75af5b9b02896368d8a8ecc0b6df315bb9e27140b874
MD5 01f3af5da63702efc0f9ae27b94c057e
BLAKE2b-256 0cccccd0af6434b16f27c4fccd3f2f34830cc365bed70cec5cb6af8b49e317c0

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 168.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ac66a7eb2ad1bcb6754868aae349b42bd250d8f41f01374bfa6953cc3397bae1
MD5 2f38cabbe25f73a1d9c15e31012f204f
BLAKE2b-256 e225d0cd0f698c9a8954fd96149c1d016f0b1fe0fd27aeff5d195f77aaf88e4e

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp311-cp311-win32.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp311-cp311-win32.whl
  • Upload date:
  • Size: 134.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 0f1be2cf604217416233de4fc5adfad715a41a1624964d27f4cf4cc1d920cea8
MD5 4901544c33fde409c7f7127125783ad4
BLAKE2b-256 6fc2ee0b8bd64ba109c350de73225de1f9348803fa88738f18add1527bd9d69c

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp311-cp311-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f7d384778997e80be0d7648ec568e02672981968e9a3c793e8e5e2c335221be9
MD5 5e9256dd4c8d758f34fb66212004281f
BLAKE2b-256 6b10f91985492392e3b9d225b07e6e2e865c3feab02b4f7c746a9a82efbf3d30

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp311-cp311-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4c9aaf59963051cd75411ece56088e7d71e24fef709138e18b7da8bd7eba0c99
MD5 21690bbc57383f27519607c9cb42b438
BLAKE2b-256 834de8c921c3a1b611c065869b985bccc61ce028b77cff858a069d6793f2748b

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d7421eab3190d6f2f504b48d1d5661d25331c18a5547ca8a1b89ee88a144545
MD5 08ba6b5e0a568515e5c4542cfb82eaf6
BLAKE2b-256 786cae9ac22ced1d2d439868d3c07ab793f9319671080e6bfbc932716bf997ef

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 750f8bceb97bdd3c75bc461e8e9d88902ea5a4477d1943469b08805a66f1cc5c
MD5 3a1b31295e13f9562c32e4a63132eea2
BLAKE2b-256 8743376bb879a7a60071624aee4e6ef0d9bb8f8af5882a14a4c779a52ca48da5

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 221.3 kB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0ec3492327900fc6847765d76ad32f8874e6ddbe6f95488ff77997186cee14cb
MD5 6da875075294329a405aad119addb439
BLAKE2b-256 3be0075cf7b03b6854a81656d5b32278b159707f5ba014d9673edc687674666d

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp311-cp311-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 388.8 kB
  • Tags: CPython 3.11, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0bc3780965aaa610600b9f792d41bbd0df0319291509fe2f98071804a5177fd3
MD5 96faff27230ece65711df9dacb8ccd14
BLAKE2b-256 792021b3be0007787ea0e2fa7ce64f299c7027b00856a476f507347284b20fa7

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 170.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8b1554496ca73681d6962fb4c69ccb81e03280d52d1e433214a6432d06209fd0
MD5 bc5a66c1b8b7a2e514d6b7478008d693
BLAKE2b-256 f4f9905f4df508942d80e131212f5d760314c963f26347201e6f33ef9794ef35

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 134.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2362eb703821834140acc8201dbc592eacff83a323b653811df7320ac0363669
MD5 3ae29b3a17ae9367966625a557b8cacf
BLAKE2b-256 058098aa17165c5c2a663f089b63de7b2356c48402c172368b2bc446e3057a26

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 82411c0bbbf04d2e2144589e0fa48f6c79999ca0e0a0ebea496104af9c89f135
MD5 f914368a8085a47f75da5104cd3ae480
BLAKE2b-256 303568134a10b5751cb959ee289d6c4602cd8885c2c936e55ea8a8c9a7babe96

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f6be59033761db096f238d09cbfc64d527b8b7da61eeac1d48ff557778576fde
MD5 82618bda68554ec2e5329f0499b6686d
BLAKE2b-256 87cdab7b1119a1d87afe763a484b7cf1745c027031740eb7e2d0a0ffb4193786

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 52dbba26b9bc17dfa10747bf6bc82f0268f213d2df07c40e6889cadd72e172b5
MD5 535be2522ed2142db4cb5404ef7b6fc6
BLAKE2b-256 ff137048b9524c1df388f2ec3829e118fdc045a88ba04a94ed87873dee8b5fe8

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6247d9ac25e626b919c1764f3112906557c2a8b504cbab7773e8a8664dfef996
MD5 c115f7ee2426c12081d1c700c1445fa1
BLAKE2b-256 d2fd6d3b9b7c3539050b707c068916a4254f022b31591b2a50d4f8633dba6315

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 221.8 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 adeac13299992adbad5b43ef3f08a5172b384a30767aa8b1a203497fdd07b068
MD5 b2baf5774bd53c294874134b07348368
BLAKE2b-256 d084b09acd85d9a41326de9b93ec0ddb9b91e91ec0c9e4517ce07854caa724cc

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 390.0 kB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a4c777b366df64dac991a365de6e92ada342632d8866a16f009fd75dbd9b1436
MD5 9bf668cde204680098ad3e9180f3c178
BLAKE2b-256 17a1c4dd007870201e56a10a630082d30f34211c84f3bdaee3eac76dcc467202

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 171.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4acd0ef3a597f9e9124e073928eca54e891559cdb6758e926c84bc5f0872ec28
MD5 5b388a1eb920381df75c6d91073501c4
BLAKE2b-256 5b355e7fe40e9494a1b54cffa94f16a3c2e4017634e12f4c5b5c9a8850fe8312

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 135.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5b1a96c6b8ba55b43d2122b56281dc34f30249dbdc8133633679fbf67ab235a7
MD5 538b4163be93c894fc849ba2ccc7d6e3
BLAKE2b-256 bc43855a548cc96db1414f49a573710c138189636712a3b9b4001e295fd3e769

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 26f86c66d8e24b92756b94e3bbaef5350fd8abb32b567f858e9e3c59eb299e26
MD5 55c307f5aa22bade1a705942c46b387e
BLAKE2b-256 0e8f6dafd2e8e1d8248b10e6cc73df7ef35c38959acb383bd145c54c0d2a7c38

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 985204e7e92dde72ead8fcf26688c6557f3b3eb9d09f98c0c62e49684fd1f2ca
MD5 c784e3f2338780503621f0969bb7caf7
BLAKE2b-256 2639d1a36093bf0db6863dc59e72746879ca8a13b1f4fb5369c174014567a7cd

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a80bf7570320c70bd3dbd209905dfe50809e194756496c2ac2efac3e308ef7e
MD5 55ff5ddb9b814be7d44d42394d947c95
BLAKE2b-256 89210c10343d7be147bc9538cbcb3f6bad59eb16ee8d0d3c6680110c6814c065

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 41c9bcb39fb09e6632be70340aede29948e7d39d7dcb21d2203f94512ab60da1
MD5 025f4abd68623c5aca205dafd8a81bcd
BLAKE2b-256 a30e90267c2dc8c515d6596f73074fa8ffa6c3ad1059695656e6a1ff0a65636a

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 223.3 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 01e69304e1adb68be0ec9f5fe60ceb06f46f2736be6acdc12fbf9e0f1d4fafe0
MD5 bd483bdceb68ac607a25fecf6c0319f7
BLAKE2b-256 98411c3388c04c497fc6141ec2af9c0c14a91b01a3da8263532929791b391e0e

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 393.1 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 033e3770b513e36711acf1c3218043bca43a9f1951d97d44f87269416e48e7d9
MD5 dcd60ffc5f98c9c619d8235e813f5b6f
BLAKE2b-256 adb96995789ee1222293af581724678a89b11c52c874f4eff82403838ddd5f55

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 171.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b6b11e0f7bf35a006a2e4d5d2588e1421b26f66cc7c362e4722611d680b6a59d
MD5 21231405bffbf4912d1e29dd3cfa663f
BLAKE2b-256 c40dea23dda8a91c56eec2a3abacdf0b4c1d27b29cfcc17571fc742db4dd47fd

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 135.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6d4631ccf877a0975e78e11773788bc639e3e1816aa85522b78117739423781b
MD5 4730097f4498db841f243d6b84cb4de0
BLAKE2b-256 b63f8bbe6d1ced4bbc6363309774da74cbb0636f08a91be094336a8d54006f97

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bf4487975f2c83502125c27520c5bd2429c43c43dcf4f557092207e080228024
MD5 bdfab027b1929e296150f02b1bd8621a
BLAKE2b-256 2db913dc8097250c333e82e482ee674cb97c3b96b007f4aaf2fe5710ab62b863

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bb41074df831c9d2d03d6a255c2c16c81232ce6c8725cfdc11949a1208da000e
MD5 be9364d02e13fea54e97c3aba63ae0eb
BLAKE2b-256 4f1412937e5a85a5fae0aa6145a9cc47af3a19ed26649f7faee29e11f49b00ec

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64e445d34533b082ab95f25f442c280c866d18b761d45047ee8589b7ab8b8b76
MD5 2d9e23a579c73c2495ba88c1025d32ef
BLAKE2b-256 b70312267010c138f4d3e84bf0533042448428b2ac0725b9eb6b68e1d588132d

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 21e799b461a1d8ce806ff8537c88e7c0abd7025b7fac33d0cdd1162c3d225aab
MD5 674bb913b48a901955f3fcaf89263479
BLAKE2b-256 f110bfa95a0d1e240000f4e30dd2a93ad789e65186808e8c887792bdb2b8b3a0

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp38-cp38-macosx_11_0_universal2.whl
  • Upload date:
  • Size: 388.3 kB
  • Tags: CPython 3.8, macOS 11.0+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 e9281ed544ca3887047b7c1bfd6b705206644c24942ca377e954366ae7e7f26b
MD5 80648fb1ef07607f203d62d620c3f3f2
BLAKE2b-256 653444efb9c4fe3e3847cadafa156f6b067ac7316d60270576fd396f0481c0ee

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 221.9 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2f032ebcc2c65717db1f82e5161927d3b40eb639d5a549681e4f52bbbcd01a2
MD5 73a5271eabba77a29e36ffc4c81bea33
BLAKE2b-256 32bc07b8eb1b1f2f5edef26da13a2904ed8d7e8fbb1c67a88e0c372bd097fc23

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 163.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9cc0a1217781b61bee10eb397eda3aad794f071e3a3d647d55103a729e57028f
MD5 cfcac20f316afd0f13da4bddb8dd961c
BLAKE2b-256 55c153c941e70a9e31604455e394e1439c145e29dd621ca426f8cf1da0fdda81

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 133.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 75378e6303bfa883a20ca4aa73377b42610b7aa8ff7af782384cfdff3cc5fcee
MD5 d8b5a572db1be06236efad9a728b2088
BLAKE2b-256 c18ef7fdd9c94ae5d519c09f9d8cf20282b872146790b2cf2a6fa16d24afcd8e

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4c58fbeb5d03c3fe528878c89e6859e8dec9f04c18520853f9c34c3c76ab6461
MD5 4aa7cd228874733e04a805120f690ab8
BLAKE2b-256 e3999535903c3d26b5d5b441779cabda266df8dd03f05161331d17c51640db31

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c5eaf48960d47695c53e42e8701a33294ac4de3fd17141ffeab6d3971077e03a
MD5 969fb4f9cd1504041c94bf5b901150bd
BLAKE2b-256 30c7ec60a3430b78f113e9163e1f06939bfcef201aff0531905b60a33c2cb50a

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6df50cb608001b257a4f681a2a6588da269f18ed62ee8a4cef7c9b564135e688
MD5 cd7eba57207b75af1192e0f562bdcdc6
BLAKE2b-256 5b45c984fbb99a42eed2046e2b548e90e18085847378914bb2f111c65e55f724

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e32d8aae3ef02ebb131b5b8ca327d9eb77dc184556e5365b515ba14a67917316
MD5 d2f01c22eb7d9d8b9f22f5021d7c1899
BLAKE2b-256 ab0219f3bb07528f97272adb2e47bf245077d31659b96c883412245dc5a34071

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 214.6 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d8712a56889338d071be1fae1f57dc668663abc78cef8ec8340993018cfee58a
MD5 43c1464ebe1be253e96bb9365e28c190
BLAKE2b-256 74e4cbb4c46ba905504758f0ed21b45c5f8d226ac100f7172a821c531006985b

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 176.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ee2dad6b17b13dde31c2e50f50da70d375d02158afb013c1e5148d162c585484
MD5 1a6d890860b4574765dad233b381a6b6
BLAKE2b-256 3647bdd435ba384e6802be12e1b71b4bb97bc8820ad9c2c3a153459a29af1dc5

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp36-cp36m-win32.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 141.5 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 3df55e6b932f933334b9596b368cae5cccf52cd9887d99cedf64209481046dd2
MD5 cadee88351ac73bbfb4cb1033a67a68e
BLAKE2b-256 df87d0a2224f90fca0623ce85da645c7b9a59d75ef69caa9c637dfd449c2fee7

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cf28a06f7fd8ceeca271628c01cecf1e628687582f8aa3f585791b9c31dcf945
MD5 7be0b234c1cfd57339b9b8a028f9d0bd
BLAKE2b-256 c64a973b044b4cca2cae07ff32f8d88a008348325711c74ec475424318d93eba

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp36-cp36m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 53d5eaabfb1a714d3c239d2eb79834d4cafb4a5ea9ff7d4636539d7189095514
MD5 dee0863ad075a37f9a103ac9d2a9210b
BLAKE2b-256 6f69ef8e94fa19edaee6d5ff753b180aca3eedfc3987e0c07256c11e959a44d9

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c708115c6f23aa23964fa67bea10d34fd40746fa254ebe6f266c932d1f958864
MD5 9b6f829c6dffcfbecd59d8fe274f2637
BLAKE2b-256 7c6d9d6775689ab0a3cd0a0c381d1e61be4c922002e471a399006159405f25f7

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fill_voids-2.0.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7aaf669a6f0140e9ceea586f128d79d5d055937294c093c9309b871213d0a257
MD5 b695dd98d7663277f0ed2f0232b7baf5
BLAKE2b-256 0ed525a7b5550c4a20180a006a3e8ebefb7970f761aeff7dcfe3bd0d060c623a

See more details on using hashes here.

File details

Details for the file fill_voids-2.0.5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fill_voids-2.0.5-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 214.5 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fill_voids-2.0.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d15ae4ebfa103997cb97be878258629f9b790385006cbcd70c76e5aa9effcef6
MD5 6510526584c311ca5e29f3745d99193c
BLAKE2b-256 32526fee5f19ffde2dcb828a65426017b496049247b5d4e9b15063674b243e14

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page