Skip to main content

Coroutine-based network library

Project description

gevent is a coroutine-based Python networking library.

Features include:

  • Fast event loop based on libev or libuv.

  • Lightweight execution units based on greenlet.

  • Familiar API that re-uses concepts from the Python standard library.

  • Cooperative sockets with SSL support.

  • DNS queries performed through c-ares or a threadpool.

  • Ability to use standard library and 3rd party modules written for standard blocking sockets

gevent is inspired by eventlet but features more consistent API, simpler implementation and better performance. Read why others use gevent and check out the list of the open source projects based on gevent.

gevent was written by Denis Bilenko.

Since version 1.1, gevent is maintained by NextThought with help from the contributors and is licensed under the MIT license.

See what’s new in the latest major release.

Check out the detailed changelog for this version.

Get gevent

gevent runs on Python >= 2.7, Python >= 3.4, or PyPy >= 5.5 (including PyPy2 and PyPy3). On all platforms, installing setuptools is required (this is done automatically if working in a virtual environment).

You can use pip to install gevent:

pip install gevent

Download the latest release from Python Package Index or clone the repository.

Read the documentation online at http://www.gevent.org. Additional installation information can be found here.

Post feedback and issues on the bug tracker, mailing list, blog and twitter (@gevent).

Development

To install the latest development version:

pip install setuptools cffi 'cython>=0.27' git+git://github.com/gevent/gevent.git#egg=gevent

To hack on gevent (using a virtualenv):

$ git clone https://github.com/gevent/gevent.git
$ cd gevent
$ virtualenv env
$ source env/bin/activate
(env) $ pip install -r dev-requirements.txt

Running Tests

There are a few different ways to run the tests. To simply run the tests on one version of Python during development, try this:

(env) $ pip install -e .
(env) $ cd src/greentest
(env) $ python ./testrunner.py

Before submitting a pull request, it’s a good idea to run the tests across all supported versions of Python, and to check the code quality using prospector. This is what is done on Travis CI. Locally it can be done using tox:

pip install tox
tox

The testrunner accepts a --coverage argument to enable code coverage metrics through the coverage.py package. That would go something like this:

cd src/greentest
python testrunner.py --coverage
coverage combine
coverage html -i
<open htmlcov/index.html>

Builds on Travis CI automatically submit updates to coveralls.io to monitor test coverage.

https://coveralls.io/repos/gevent/gevent/badge.svg?branch=master&service=github

Continuous integration

A test suite is run for every push and pull request submitted. Travis CI is used to test on Linux, and AppVeyor runs the builds on Windows.

https://travis-ci.org/gevent/gevent.svg?branch=master https://ci.appveyor.com/api/projects/status/q4kl21ng2yo2ixur?svg=true

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gevent-1.3a2.tar.gz (4.1 MB view details)

Uploaded Source

Built Distributions

gevent-1.3a2.win-amd64-py3.6.exe (1.8 MB view details)

Uploaded Source

gevent-1.3a2.win-amd64-py3.5.exe (1.8 MB view details)

Uploaded Source

gevent-1.3a2.win-amd64-py3.4.exe (1.5 MB view details)

Uploaded Source

gevent-1.3a2.win-amd64-py2.7.exe (1.5 MB view details)

Uploaded Source

gevent-1.3a2.win32-py3.6.exe (1.6 MB view details)

Uploaded Source

gevent-1.3a2.win32-py3.5.exe (1.6 MB view details)

Uploaded Source

gevent-1.3a2.win32-py3.4.exe (1.4 MB view details)

Uploaded Source

gevent-1.3a2.win32-py2.7.exe (1.4 MB view details)

Uploaded Source

gevent-1.3a2-pp2510-pypy_41-macosx_10_13_x86_64.whl (656.5 kB view details)

Uploaded PyPy macOS 10.13+ x86-64

gevent-1.3a2-pp259-pypy_41-win32.whl (631.7 kB view details)

Uploaded PyPy Windows x86

gevent-1.3a2-cp37-cp37m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

gevent-1.3a2-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

gevent-1.3a2-cp36-cp36m-win32.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86

gevent-1.3a2-cp36-cp36m-manylinux1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.6m

gevent-1.3a2-cp36-cp36m-macosx_10_6_intel.whl (1.9 MB view details)

Uploaded CPython 3.6m macOS 10.6+ Intel (x86-64, i386)

gevent-1.3a2-cp35-cp35m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.5m Windows x86-64

gevent-1.3a2-cp35-cp35m-win32.whl (1.1 MB view details)

Uploaded CPython 3.5m Windows x86

gevent-1.3a2-cp35-cp35m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.5m

gevent-1.3a2-cp35-cp35m-macosx_10_6_intel.whl (1.9 MB view details)

Uploaded CPython 3.5m macOS 10.6+ Intel (x86-64, i386)

gevent-1.3a2-cp34-cp34m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.4m Windows x86-64

gevent-1.3a2-cp34-cp34m-win32.whl (1.2 MB view details)

Uploaded CPython 3.4m Windows x86

gevent-1.3a2-cp34-cp34m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.4m

gevent-1.3a2-cp34-cp34m-macosx_10_6_intel.whl (1.9 MB view details)

Uploaded CPython 3.4m macOS 10.6+ Intel (x86-64, i386)

gevent-1.3a2-cp27-cp27mu-manylinux1_x86_64.whl (2.5 MB view details)

Uploaded CPython 2.7mu

gevent-1.3a2-cp27-cp27m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 2.7m Windows x86-64

gevent-1.3a2-cp27-cp27m-win32.whl (1.2 MB view details)

Uploaded CPython 2.7m Windows x86

gevent-1.3a2-cp27-cp27m-manylinux1_x86_64.whl (2.5 MB view details)

Uploaded CPython 2.7m

gevent-1.3a2-cp27-cp27m-macosx_10_6_intel.whl (1.9 MB view details)

Uploaded CPython 2.7m macOS 10.6+ Intel (x86-64, i386)

File details

Details for the file gevent-1.3a2.tar.gz.

File metadata

  • Download URL: gevent-1.3a2.tar.gz
  • Upload date:
  • Size: 4.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for gevent-1.3a2.tar.gz
Algorithm Hash digest
SHA256 f7ab82697111ea233c7beeadf5240f669dfad9c4bbc89a3ec80a49e2c48a65bd
MD5 8d73a7b0ceb0ca791b22e6f7b7061e9e
BLAKE2b-256 c58972647a4e07dad38c422afefaf5908b3dfe02343218d29485888be19ca583

See more details on using hashes here.

File details

Details for the file gevent-1.3a2.win-amd64-py3.6.exe.

File metadata

File hashes

Hashes for gevent-1.3a2.win-amd64-py3.6.exe
Algorithm Hash digest
SHA256 760c8efc60b7a32c95045a9bdb562ecc2706a6df43c2b4a2696776ebd91b9d01
MD5 8168a8010f885fb384c6d4c33ed506a1
BLAKE2b-256 f5051eec3a79cb32613b4b5e959fedda97ee669843ea79d1140484b99af33645

See more details on using hashes here.

File details

Details for the file gevent-1.3a2.win-amd64-py3.5.exe.

File metadata

File hashes

Hashes for gevent-1.3a2.win-amd64-py3.5.exe
Algorithm Hash digest
SHA256 1c21e8d386654aaba9438ebe5cc532c6dcff62409a557bf44699c31588d61da3
MD5 f3f4b5244f2554f12ad14f418ba68537
BLAKE2b-256 307b41189a15b376d93c2d3bb623651070e90cf7dbd7fec0850e5d6cbb2aa9f3

See more details on using hashes here.

File details

Details for the file gevent-1.3a2.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for gevent-1.3a2.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 58cde5f098fb246ac1cf5699ed242517fb050992d83f4f67c7edea5f7b7f614f
MD5 e561d3c98e17c3ea40dc79ce3d3f01de
BLAKE2b-256 335efc1360ced1c62ff16ebdf996628aa38a0fc6ac697aaf815bd778f25d2ff1

See more details on using hashes here.

File details

Details for the file gevent-1.3a2.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for gevent-1.3a2.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 01043932681b5f62d99e048dca3ef3a5520333437a3128cd0834f2b5b4b7d65a
MD5 875423625de2222b1307123851e197ab
BLAKE2b-256 48c8dcbce0b21276049fe8a7672cc3b0cb8434e7c5227722f22b883733328d15

See more details on using hashes here.

File details

Details for the file gevent-1.3a2.win32-py3.6.exe.

File metadata

File hashes

Hashes for gevent-1.3a2.win32-py3.6.exe
Algorithm Hash digest
SHA256 1c7c9744ff06fce30149e2a5d5463b3c2f21d7dfef9a45dc0d4db0f16742a20d
MD5 a3683e335f8de9719ca7ad2ff19581ad
BLAKE2b-256 1e9713d629734dbd6e7020054aa243ba3c824ade4712eca4897262f387d98a32

See more details on using hashes here.

File details

Details for the file gevent-1.3a2.win32-py3.5.exe.

File metadata

File hashes

Hashes for gevent-1.3a2.win32-py3.5.exe
Algorithm Hash digest
SHA256 a39f8bbfea676f45aae86069eddec619ce1a3a7718a6024b6ec6e2b51cae1fb5
MD5 9e77a0db92994759f9a85ea7dd6b14c3
BLAKE2b-256 f4862da2d528d1e1273b0e91a38496ac28e7c1929cb265b62b3bca5b0c73eef5

See more details on using hashes here.

File details

Details for the file gevent-1.3a2.win32-py3.4.exe.

File metadata

File hashes

Hashes for gevent-1.3a2.win32-py3.4.exe
Algorithm Hash digest
SHA256 12b4bc8fddb9bb9560f40f7a7b40a77b65983c9613a4817ae22a826627d5ce83
MD5 6612267ef798626e244caf3abc7d79ba
BLAKE2b-256 99ffb0f4b0667286d9b96c42aa64082f1bb1aea472bddac68ed540b2af8ae8a5

See more details on using hashes here.

File details

Details for the file gevent-1.3a2.win32-py2.7.exe.

File metadata

File hashes

Hashes for gevent-1.3a2.win32-py2.7.exe
Algorithm Hash digest
SHA256 830de1e6d25b1ce579a147015a92dbfaec53c59d58f9c95a7bf37e5ca308a2ae
MD5 b310c88cf8ba3f39425f261501d44d40
BLAKE2b-256 02d1fe79fccfa25bb5c9b40491bd653b74b771ed511bd919c16c5a531f5720b2

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-pp2510-pypy_41-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-pp2510-pypy_41-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 654d663a1b7480635f589cb138850d7899a860b5e20cf65c5e2f41d66b7e4e5e
MD5 19354e023240ba90b3e3a6b7f15a9214
BLAKE2b-256 1604b6872fbc203d8e1159d0b17ddfd443039873f2cfdd6caf92ab8253f07c31

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-pp259-pypy_41-win32.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-pp259-pypy_41-win32.whl
Algorithm Hash digest
SHA256 b67bcc163b68137093aa10f51b1664a92aecbda0c49d2f39109884480394c2c4
MD5 70d100d1fd354e767bc9df245c1a08ea
BLAKE2b-256 ede7321ae58b9604c5d818aad05ef207af8517b3d46eea17e8ac72f1307f4589

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e9571ec7c4f27fd2f0c3a0376ee1dc93a9435e5642d525d3665d2fba7748af6
MD5 c4dfd45c15b7cf554e806ea22767d873
BLAKE2b-256 51dc3f6f3cf36a118727ad36d403e517d0399d4e33bdcc8c8a88f84239612c77

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f38ac1662f9eba3d90ff889b40b8eade3dfa74503f9bf23f6b441e3f1d5b2ab9
MD5 d7a7afb669387c97ab26e355feeab97e
BLAKE2b-256 7257baa27a0bc2c6c5456ced4284faa379766f6109c7a3e3d9f4262f01e82ef4

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 cae1c24bcb7d7e86a70b8694edc555616bca02c8904c0553ce0ba4ab0baca2e4
MD5 f092bbd0566deaf1945e2cb54926d598
BLAKE2b-256 4ffaf28151e431df45f5941bf175b44f8041093492bc581be099596faeb1df68

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 39021b020a5830af3fa8a26816d0b940bb866b7738d553ef761759b61f2e7e98
MD5 340ebf6c8277338a3a19d8266939a812
BLAKE2b-256 52f952c82be5ae227bae5b6ca7f63cbb2fc56eeac5f331d61b6599886d9dbd43

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp36-cp36m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp36-cp36m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 8da3e2767ea076a1b47eb5ce98f7244c07629f86a8a50628d37ae2c46f689bdf
MD5 fabc90f2563c78bb6eb024f21d37e6ea
BLAKE2b-256 9ce6c3ea8be5d340a4082a0e2d0f761566b56e31398b203ccdb97db541ef2d56

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 15de2944c51beef5c91b403e58b798cdf4da6fcd57000049846da29be08e6cee
MD5 91552b9b7d5674dd39031425e8309ac0
BLAKE2b-256 4d7d28b9a532ef569063635d6068a42ce04cd1b52f3bb9deb4e5258df44f1159

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 c466554186453d87346c30b12d4764a055b258611df54beff3424395ade81e47
MD5 2b4ff19124d320ffa6d58cf82698393f
BLAKE2b-256 be4cdee7160a6f92922d00518d86c2f318e3603779150536da693862e5af02e2

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6d640dd63c303a3c1d9c50448eb2453bbb3e749ece35debf73c5849d88a1d870
MD5 a6c2f155faef9121f7ca158e3602d5e5
BLAKE2b-256 8af42e3e978cec41d2be711348e3f3a558061c96919725cc0e088e8c0e3dbc6c

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 5161eaaa2a40d7fc7a0a754cf8a483197bb178ff1666c37082adc3fa4396ff6c
MD5 8f7f88b36261721c06208b1824963335
BLAKE2b-256 21f8432311b034dbdcfe60f689ce1d6a90c783ffef43743c85a7fa08bd0935e8

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 db21164f8612a0683f861fee94b939954f6f41692b0721f770bb4b7b344c8e64
MD5 6c1261069f50cce94bcab63b23d2e813
BLAKE2b-256 f576b6fb0139782ea6eeb9132c05e87173e1e7ccc6432c7cb28ac2323bdec670

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 6bd1c5f6ccb9ddae389c10a9eb78386fa2f6a76a5f7d7caedcf04c9a2f3c0689
MD5 54ddea7b619ea542acfc8b8903ccaf11
BLAKE2b-256 af64f1f5fe6256b13730afbdc6a4286849117f09580dd002121f28c0feca0629

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cc93e9486331dd4a20dcdf129882fd189b79431b3cb6d0dcc33fe488957f2cec
MD5 e3801be77e4028cfd6647a5340c12b94
BLAKE2b-256 a6e7f5eb8dee88d8fa12179e155e39dbf47c8a8ceab72d9462a774dc3edba11b

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp34-cp34m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp34-cp34m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 aa64254b6e80ef30bc448bf1535639403100c91c6161edd0289b4ca7343d74b6
MD5 182e79435b96ce93e238562599302770
BLAKE2b-256 c105a500a745c39edc62d36e19657fc448e5a41da9e2abd78229b3ef499e8c03

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7c76b233f0bb7a640e7033e4653c0d9ad90b89d290f9f8fda0260c61a7362c98
MD5 dc49550e890b4edde775fbb0b72c441d
BLAKE2b-256 f1c3186d033dad6d45afd7c55a5067a2e80e22c630f538085d1655bd88991565

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 fa4867550021c77f03098035c6bd1ce16b202fd5a14618741cb9811fd348a666
MD5 db14e172bb654b7ab713902a59bc6c6d
BLAKE2b-256 2988d4ccdec90f087f58e634d54775ccec20e6f1cccc063e33f090752aafef87

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 0fda0b5368b980ed53421b91a5d13a531c21c46c7f5d14aa4a39ccdd48ef8b18
MD5 ffced82c3f90109969db2a9180f1404c
BLAKE2b-256 052a40dd17280bae784454530accf3c4d1811fe7797ae0b56f8eb680042f4ce8

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 64ae1efc4d744273fa05d73a2a964cd7339d3b5ce83368a111f96b3bc2bae229
MD5 1a32e34c60f1b9b3a0c470420065e512
BLAKE2b-256 42f8c700e5256ea23b485e6697c25ed62843cb03b934874885bc5303c1723ae4

See more details on using hashes here.

File details

Details for the file gevent-1.3a2-cp27-cp27m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for gevent-1.3a2-cp27-cp27m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 60a09ca6f265c7910110f7ca774d0018ee14d642e1e1e60dda26a251a056f74b
MD5 8978ea9c76b0a10f59ee85f0924c919c
BLAKE2b-256 d7e07959553c40fdecc281e8e57ce4d77766f04ae534234678737d1608551d6d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page