Skip to main content

ITK is an open-source toolkit for multidimensional image analysis

Project description

ITK - The Insight Toolkit

ITK: The Insight Toolkit

GitHub release PyPI Wheels License DOI Powered by NumFOCUS

C++ Python
Linux Build Status Build Status
Windows Build Status Build Status
macOS Build Status Build Status
macOS (Apple Silicon) ITK.macOS.Arm64
Linux (Code coverage) Build Status

Links

Note: For questions related to ITK, please use the official Discussion space: the issue tracker is reserved to track different aspects of the software development process, as highlighted by the available templates.

About

The Insight Toolkit (ITK) is an open-source, cross-platform toolkit for N-dimensional scientific image processing, segmentation, and registration. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both.

The ITK project uses an open governance model and is fiscally sponsored by NumFOCUS. Consider making a tax-deductible donation to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs.


ITK is distributed in binary Python packages. To install:

pip install itk

or

conda install -c conda-forge itk

The cross-platform, C++ core of the toolkit may be built from source using CMake.

Copyright

NumFOCUS holds the copyright of this software. NumFOCUS is a non-profit entity that promotes the use of open source scientific software for educational and research purposes. NumFOCUS delegates project governance to the Insight Software Consortium Council, an educational consortium dedicated to promoting and maintaining open-source, freely available software for medical image analysis. This includes promoting such software in teaching, research, and commercial applications, and maintaining webpages and user and developer communities. ITK is distributed under a license that enables use for both non-commercial and commercial applications. See LICENSE and NOTICE files for details.

Supporting ITK

ITK is a fiscally sponsored project of NumFOCUS, a non-profit dedicated to supporting the open source scientific computing community. If you want to support ITK's mission to develop and maintain open-source, reproducible scientific image analysis software for education and research, please consider making a donation to support our efforts.

NumFOCUS is 501(c)(3) non-profit charity in the United States; as such, donations to NumFOCUS are tax-deductible as allowed by law. As with any donation, you should consult with your personal tax adviser or the IRS about your particular tax situation.

Professional Services

Kitware provides professional services for ITK, including custom solution creation, collaborative research and development, development support, and training.

Citation

To cite ITK, please reference, as appropriate:

The papers

McCormick M, Liu X, Jomier J, Marion C, Ibanez L. ITK: enabling reproducible research and open science. Front Neuroinform. 2014;8:13. Published 2014 Feb 20. doi:10.3389/fninf.2014.00013

Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK – The Insight Toolkit. In Proc. of Medicine Meets Virtual Reality, J. Westwood, ed., IOS Press Amsterdam pp 586-592 (2002).

The books

Johnson, McCormick, Ibanez. "The ITK Software Guide: Design and Functionality." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-28-3.

Johnson, McCormick, Ibanez. "The ITK Software Guide: Introduction and Development Guidelines." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-27-6.

Specific software version

DOI

Once your work has been published, please create a pull request to add the publication to the ITKBibliography.bib file.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

itk_segmentation-5.4.5-cp311-abi3-win_amd64.whl (5.0 MB view details)

Uploaded CPython 3.11+Windows x86-64

itk_segmentation-5.4.5-cp311-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.11+manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

itk_segmentation-5.4.5-cp311-abi3-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (14.7 MB view details)

Uploaded CPython 3.11+manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

itk_segmentation-5.4.5-cp311-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.11+manylinux: glibc 2.17+ x86-64

itk_segmentation-5.4.5-cp311-abi3-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.11+macOS 11.0+ ARM64

itk_segmentation-5.4.5-cp311-abi3-macosx_10_9_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.11+macOS 10.9+ x86-64

itk_segmentation-5.4.5-cp310-cp310-win_amd64.whl (4.9 MB view details)

Uploaded CPython 3.10Windows x86-64

itk_segmentation-5.4.5-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (15.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

itk_segmentation-5.4.5-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (14.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

itk_segmentation-5.4.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

itk_segmentation-5.4.5-cp310-cp310-macosx_11_0_arm64.whl (10.7 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

itk_segmentation-5.4.5-cp310-cp310-macosx_10_9_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

itk_segmentation-5.4.5-cp39-cp39-win_amd64.whl (4.9 MB view details)

Uploaded CPython 3.9Windows x86-64

itk_segmentation-5.4.5-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (15.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

itk_segmentation-5.4.5-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (14.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

itk_segmentation-5.4.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

itk_segmentation-5.4.5-cp39-cp39-macosx_11_0_arm64.whl (10.7 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

itk_segmentation-5.4.5-cp39-cp39-macosx_10_9_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file itk_segmentation-5.4.5-cp311-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp311-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 ce97280aa96f84360df44c577066c0763c40f6bac212920a3feb4bb1ed5678dc
MD5 05fa46b383cd25a35574c08996e1d965
BLAKE2b-256 833d71842281ce38d811ab6d06723199b8044b1a7d4fda0ae143896746bd1552

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp311-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp311-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ac82b55ba1a7d0db651db2bbc5a5a942c06f6b80c156e1e7a8fab36fe39083d7
MD5 e7593c60f94143cb2d91a06645b74618
BLAKE2b-256 772604c1e6068d9e78ce39bd3c32652b5472b77c1e3fd21f0121455cf41a14d3

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp311-abi3-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp311-abi3-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0a6bed816025d3dea4bb9055e65d6b12b872003cdd15667acb95b3a25bab2964
MD5 34d445c3f96f4523fb40bd0596cf760b
BLAKE2b-256 049e908767d8e6b51dd00cf76c479a31b1dff2ac7db96ddb9c37a78c14b29301

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp311-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp311-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 ce1794832dacaf5b002781b47f2b0aff19d3e57b9c73e1671e9b6d1d3c321d25
MD5 89dcc9eac3c7c8ffbcaef52a67a93c13
BLAKE2b-256 c8f75408b1433b5aa16a668e3c7c10b8fb255ffed06e554c26ad7e912c4c63cf

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp311-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp311-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 916ee89ec7090ce6b1de271bb7cc60244fd58bdc28d427745c800d257520f541
MD5 61cc2ec56bd0422c8be27f3bb7aab7d8
BLAKE2b-256 1d79880dafe2539d58da0c0a4efb226d7caa1d4ffee0b4177cff4b4d180491d9

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp311-abi3-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp311-abi3-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ece8ea70f3dfaedfaca617b6faba569b149fb020b7b2f6ed90e85bbc8de8ee6f
MD5 af80caf74582b08102eddf793488c987
BLAKE2b-256 43af63ddc78ce33181a6fecc26eeec45ecf38f2ea0f1340238d6799da939e1ec

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 21d328ff802f491d38878266dc379c59f07a00572bdab7e677483afc5f81ab7d
MD5 9aab248ef5b97e4592fd293505b8b599
BLAKE2b-256 fc438ca943adca85f74b009f82b540ccb2db86a5191b125d863a01f58ff9fe4d

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 00c24d33dbd56228fe01ddd5d1dcbf34c1767671f6498326b2348432219a10cc
MD5 70b5f6fa4a2a65c32a7ac1dd802604a0
BLAKE2b-256 6e16b8ceb9336669211bfa285f5bd538a3e206d6f0876823d8a9af582164b62b

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d642120b430b0385b09046d2d2496aa66f8a6d93143da49deca85fcfb971ecda
MD5 b0ea4ffa2db24b9218d6e58979e5907b
BLAKE2b-256 5f0d029b2cd031a0b53fa632a5a9f7924338eb18fe472f4b06d052de05daa851

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 78827b25e1dd365176c03c535e115e8c34ef7e0f27fa737bf80c011c5383f24b
MD5 a1bb27665c0ab53d8cfe1290646f3ccf
BLAKE2b-256 6dec61809e70512c01e21e07db75a44d508d9f47d8e1d9a2ab13aeca11991b24

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 031d25a6d4d440993f1c421b83b5546c73cc1d33a104f3aad4ddeea32aa26c42
MD5 4ed62581d8bea4afe1348fb97c3655c4
BLAKE2b-256 4329530ba60f177a4d5976389d8a5c292a64d554ac08a3e9ab480981ad4e1883

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0110111f03485936f6e4b808331b20b9ba49910e217abb4eadd2ae5ad1e8178d
MD5 f2eead37157506f8b9dc8c21cb45f6fa
BLAKE2b-256 b4cbf4c76750ce67d0fea82d4ea8d3b4ee150142c5247c8e9858a8bf1ec1a845

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 523502e1fcf22a9d13d23b165d03aed3ed06b4d2eeba7a9f073a98b5442e7332
MD5 ed22a293bbaddd75ab86072a9e342b5e
BLAKE2b-256 a1366211bdcd866a93d527874385b90d0a7d3c428de4fa1398d543b47373ab61

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3caf2ebd8ca091e9505e0c681c6e9956f3f53dbb8a5b16ae8d80f385b996b4da
MD5 532e8c01ab58be0a0f7786516a05b9f4
BLAKE2b-256 16620977aa0e474db0e6eb60c7d85a98b12a06635beaec7ebf634318d9b88e9f

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bfe13fc5d1fb20e3e51297d0c0bebc2d6adcd9fef61280416facebd3b1c33863
MD5 c6a66fd85259b85bb1fd68548252aa9c
BLAKE2b-256 c4ea2a7d391de34e3aaf98c80c50b5bf879abcf924ac37a4d700418aebfcc5a8

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 2a87ca600be85429f2fb21fe662c39983fe42a020e6081b2a4538f10985fb9fa
MD5 0972d376890516e56c85f8214699bdb4
BLAKE2b-256 6348fd0ad89dfd79af44ce669479f652c8e44ea77fe55ee9ab694e459349c1df

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 668f4205c10c73691a5f6d8f955f46310d87dde91827e3c7324011d412bde86e
MD5 213c53ff198f503cb5b152a4d64c88a4
BLAKE2b-256 7ac3330274ee76a7f08b99771cbc23b25d509cb8fe4819a6a8f2fa47d260f0b2

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d693aed7cc58ffece018314549ef18ac4fe59fdcf2adf1e6b190920dc8e0a706
MD5 b4dc6365d4f328411e7f7876fc9cd74b
BLAKE2b-256 97502ecf099b84ad00debe2eb07732f5756830748acc3dde41f3966a3eed6be2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page