JMetalPy. Python version of the jMetal framework
Project description
<p align="center">
<br/>
<img src=docs/source/jmetalpy.png alt="jMetalPy">
<br/>
</p>
# jMetalPy: Python version of the jMetal framework
[![Build Status](https://img.shields.io/travis/jMetal/jMetalPy.svg?style=flat-square)](https://travis-ci.org/jMetal/jMetalPy)
[![Read the Docs](https://img.shields.io/readthedocs/jmetalpy.svg?style=flat-square)](https://readthedocs.org/projects/jmetalpy/)
[![PyPI License](https://img.shields.io/pypi/l/jMetalPy.svg?style=flat-square)]()
[![PyPI Python version](https://img.shields.io/pypi/pyversions/jMetalPy.svg?style=flat-square)]()
## Table of Contents
- [Installation](#installation)
- [Usage](#usage)
- [Features](#features)
- [License](#license)
## Installation
To download jMetalPy just clone the Git repository hosted in GitHub:
```bash
$ git clone https://github.com/jMetal/jMetalPy.git
$ python setup.py install
```
Alternatively, you can install it with `pip`:
```bash
$ pip install jmetalpy
```
## Usage
Examples of configuring and running all the included algorithms are located [in the docs](https://jmetalpy.readthedocs.io/en/latest/examples.html).
## Features
The current release of jMetalPy (v0.5.1) contains the following components:
* Algorithms: random search, NSGA-II, SMPSO, SMPSO/RP.
* Benchmark problems: ZDT1-6, DTLZ1-2, unconstrained (Kursawe, Fonseca, Schaffer, Viennet2), constrained (Srinivas, Tanaka).
* Encodings: real, binary.
* Operators: selection (binary tournament, ranking and crowding distance, random, nary random, best solution), crossover (single-point, SBX), mutation (bit-blip, polynomial, uniform, random).
* Quality indicators: hypervolume.
* Density estimator: crowding distance.
* Graphics: Pareto front plotting (2 or more objectives).
* Laboratory: Experiment class for performing studies.
<p align="center">
<br/>
<img src=docs/source/visualization.png alt="Visualization">
<br/>
</p>
## License
This project is licensed under the terms of the MIT - see the [LICENSE](LICENSE) file for details.
<br/>
<img src=docs/source/jmetalpy.png alt="jMetalPy">
<br/>
</p>
# jMetalPy: Python version of the jMetal framework
[![Build Status](https://img.shields.io/travis/jMetal/jMetalPy.svg?style=flat-square)](https://travis-ci.org/jMetal/jMetalPy)
[![Read the Docs](https://img.shields.io/readthedocs/jmetalpy.svg?style=flat-square)](https://readthedocs.org/projects/jmetalpy/)
[![PyPI License](https://img.shields.io/pypi/l/jMetalPy.svg?style=flat-square)]()
[![PyPI Python version](https://img.shields.io/pypi/pyversions/jMetalPy.svg?style=flat-square)]()
## Table of Contents
- [Installation](#installation)
- [Usage](#usage)
- [Features](#features)
- [License](#license)
## Installation
To download jMetalPy just clone the Git repository hosted in GitHub:
```bash
$ git clone https://github.com/jMetal/jMetalPy.git
$ python setup.py install
```
Alternatively, you can install it with `pip`:
```bash
$ pip install jmetalpy
```
## Usage
Examples of configuring and running all the included algorithms are located [in the docs](https://jmetalpy.readthedocs.io/en/latest/examples.html).
## Features
The current release of jMetalPy (v0.5.1) contains the following components:
* Algorithms: random search, NSGA-II, SMPSO, SMPSO/RP.
* Benchmark problems: ZDT1-6, DTLZ1-2, unconstrained (Kursawe, Fonseca, Schaffer, Viennet2), constrained (Srinivas, Tanaka).
* Encodings: real, binary.
* Operators: selection (binary tournament, ranking and crowding distance, random, nary random, best solution), crossover (single-point, SBX), mutation (bit-blip, polynomial, uniform, random).
* Quality indicators: hypervolume.
* Density estimator: crowding distance.
* Graphics: Pareto front plotting (2 or more objectives).
* Laboratory: Experiment class for performing studies.
<p align="center">
<br/>
<img src=docs/source/visualization.png alt="Visualization">
<br/>
</p>
## License
This project is licensed under the terms of the MIT - see the [LICENSE](LICENSE) file for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
jmetalpy-0.5.1.tar.gz
(36.5 kB
view hashes)
Built Distribution
jmetalpy-0.5.1-py3-none-any.whl
(58.4 kB
view hashes)