Skip to main content

Pure Python client for Apache Kafka

Project description

https://img.shields.io/badge/kafka-2.4%2C%202.3%2C%202.2%2C%202.1%2C%202.0%2C%201.1%2C%201.0%2C%200.11%2C%200.10%2C%200.9%2C%200.8-brightgreen.svg https://img.shields.io/pypi/pyversions/kafka-python.svg https://coveralls.io/repos/dpkp/kafka-python/badge.svg?branch=master&service=github https://travis-ci.org/dpkp/kafka-python.svg?branch=master https://img.shields.io/badge/license-Apache%202-blue.svg

Python client for the Apache Kafka distributed stream processing system. kafka-python is designed to function much like the official java client, with a sprinkling of pythonic interfaces (e.g., consumer iterators).

kafka-python is best used with newer brokers (0.9+), but is backwards-compatible with older versions (to 0.8.0). Some features will only be enabled on newer brokers. For example, fully coordinated consumer groups – i.e., dynamic partition assignment to multiple consumers in the same group – requires use of 0.9+ kafka brokers. Supporting this feature for earlier broker releases would require writing and maintaining custom leadership election and membership / health check code (perhaps using zookeeper or consul). For older brokers, you can achieve something similar by manually assigning different partitions to each consumer instance with config management tools like chef, ansible, etc. This approach will work fine, though it does not support rebalancing on failures. See <https://kafka-python.readthedocs.io/en/master/compatibility.html> for more details.

Please note that the master branch may contain unreleased features. For release documentation, please see readthedocs and/or python’s inline help.

>>> pip install kafka-python

KafkaConsumer

KafkaConsumer is a high-level message consumer, intended to operate as similarly as possible to the official java client. Full support for coordinated consumer groups requires use of kafka brokers that support the Group APIs: kafka v0.9+.

See <https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html> for API and configuration details.

The consumer iterator returns ConsumerRecords, which are simple namedtuples that expose basic message attributes: topic, partition, offset, key, and value:

>>> from kafka import KafkaConsumer
>>> consumer = KafkaConsumer('my_favorite_topic')
>>> for msg in consumer:
...     print (msg)
>>> # join a consumer group for dynamic partition assignment and offset commits
>>> from kafka import KafkaConsumer
>>> consumer = KafkaConsumer('my_favorite_topic', group_id='my_favorite_group')
>>> for msg in consumer:
...     print (msg)
>>> # manually assign the partition list for the consumer
>>> from kafka import TopicPartition
>>> consumer = KafkaConsumer(bootstrap_servers='localhost:1234')
>>> consumer.assign([TopicPartition('foobar', 2)])
>>> msg = next(consumer)
>>> # Deserialize msgpack-encoded values
>>> consumer = KafkaConsumer(value_deserializer=msgpack.loads)
>>> consumer.subscribe(['msgpackfoo'])
>>> for msg in consumer:
...     assert isinstance(msg.value, dict)
>>> # Access record headers. The returned value is a list of tuples
>>> # with str, bytes for key and value
>>> for msg in consumer:
...     print (msg.headers)
>>> # Get consumer metrics
>>> metrics = consumer.metrics()

KafkaProducer

KafkaProducer is a high-level, asynchronous message producer. The class is intended to operate as similarly as possible to the official java client. See <https://kafka-python.readthedocs.io/en/master/apidoc/KafkaProducer.html> for more details.

>>> from kafka import KafkaProducer
>>> producer = KafkaProducer(bootstrap_servers='localhost:1234')
>>> for _ in range(100):
...     producer.send('foobar', b'some_message_bytes')
>>> # Block until a single message is sent (or timeout)
>>> future = producer.send('foobar', b'another_message')
>>> result = future.get(timeout=60)
>>> # Block until all pending messages are at least put on the network
>>> # NOTE: This does not guarantee delivery or success! It is really
>>> # only useful if you configure internal batching using linger_ms
>>> producer.flush()
>>> # Use a key for hashed-partitioning
>>> producer.send('foobar', key=b'foo', value=b'bar')
>>> # Serialize json messages
>>> import json
>>> producer = KafkaProducer(value_serializer=lambda v: json.dumps(v).encode('utf-8'))
>>> producer.send('fizzbuzz', {'foo': 'bar'})
>>> # Serialize string keys
>>> producer = KafkaProducer(key_serializer=str.encode)
>>> producer.send('flipflap', key='ping', value=b'1234')
>>> # Compress messages
>>> producer = KafkaProducer(compression_type='gzip')
>>> for i in range(1000):
...     producer.send('foobar', b'msg %d' % i)
>>> # Include record headers. The format is list of tuples with string key
>>> # and bytes value.
>>> producer.send('foobar', value=b'c29tZSB2YWx1ZQ==', headers=[('content-encoding', b'base64')])
>>> # Get producer performance metrics
>>> metrics = producer.metrics()

Thread safety

The KafkaProducer can be used across threads without issue, unlike the KafkaConsumer which cannot.

While it is possible to use the KafkaConsumer in a thread-local manner, multiprocessing is recommended.

Compression

kafka-python supports gzip compression/decompression natively. To produce or consume lz4 compressed messages, you should install python-lz4 (pip install lz4). To enable snappy compression/decompression install python-snappy (also requires snappy library). See <https://kafka-python.readthedocs.io/en/master/install.html#optional-snappy-install> for more information.

Optimized CRC32 Validation

Kafka uses CRC32 checksums to validate messages. kafka-python includes a pure python implementation for compatibility. To improve performance for high-throughput applications, kafka-python will use crc32c for optimized native code if installed. See https://pypi.org/project/crc32c/

Protocol

A secondary goal of kafka-python is to provide an easy-to-use protocol layer for interacting with kafka brokers via the python repl. This is useful for testing, probing, and general experimentation. The protocol support is leveraged to enable a KafkaClient.check_version() method that probes a kafka broker and attempts to identify which version it is running (0.8.0 to 2.4+).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kafka-python-2.0.0.tar.gz (246.1 kB view details)

Uploaded Source

Built Distribution

kafka_python-2.0.0-py2.py3-none-any.whl (232.3 kB view details)

Uploaded Python 2Python 3

File details

Details for the file kafka-python-2.0.0.tar.gz.

File metadata

  • Download URL: kafka-python-2.0.0.tar.gz
  • Upload date:
  • Size: 246.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for kafka-python-2.0.0.tar.gz
Algorithm Hash digest
SHA256 111a90e54a56182b6b7c4818ee58f984cc427ad8f85fdff59faf45aaeacb51ea
MD5 d852d3955ee6d115fd169cb1143a64d5
BLAKE2b-256 5750c8d7d92f1f10f080ecf4c02e607d93670fbde58559b250b037de64527878

See more details on using hashes here.

File details

Details for the file kafka_python-2.0.0-py2.py3-none-any.whl.

File metadata

  • Download URL: kafka_python-2.0.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 232.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for kafka_python-2.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 53083c5c4d3a5b1f021c3c84ee4e772e5d0f7db559f623d8f02432b9a5e87264
MD5 89b6f45a345132d8395418910562cafc
BLAKE2b-256 387ea1263c31288ea203acd29b070205b4cd2b99384e528e35aed0ea7a1ea9d0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page