Skip to main content

utils & misc 4 mlm8s

Project description

mlm8s

miscellaneous for machine-learning in TensorFlow
pip install keras_tuner
pip install mlm8s

Imports:

from mlm8s import ListedPaths, paths2labels, strings2onehot, paths2label_dicts, map_via_dict
from mlm8s import GeneratorDataset, HyperModel, connect
from mlm8s import standardize, normalize, stretch, rotate_deg, flatten, correlate
from mlm8s import create_meshgrid, span_polar_basis
from mlm8s import group_unique
from mlm8s import print_plot_play
from mlm8s import get_sampling_matrix, soft_threshold, deadzone_l1_loss, lasso_l1, norm_l0, huber_loss
from mlm8s import lipschitz_grad_lasso, nesterov_momentum, ista_prox_lasso, fista

Labels from Paths:

from mlm8s import ListedPaths, paths2label_dicts, map_via_dict

### read PATH2DATA and (onehot-)encode by file-containing folder:

paths = ListedPaths(PATH2DATA)*'ogg'
label_dict = paths2label_dicts(paths(), seperators=['/', '.'], indices=[-2, 0])
labels = map_via_dict(paths2labels(paths()), label_dict)

Class - GeneratorDataset:

Enables alternating results of tf.random* -calls, from within the generator of tf.data.Dataset.from_generator*.

kwargs = dict()
kwargs['paths'] = paths
kwargs['label_dict'] = label_dict
kwargs['seperators'] = ['/', '.']
kwargs['indices'] = [-2, 0]

### Feature-Engineering with generator, that can use random variables!!
def engineer_features(paths):
    # use data in path to engineer features
    features = tf.random.uniform(shape=[32, 256, 256, 4])
    return features

kwargs['engineer_features'] = engineer_features

### Creating Features & Labels:
def generate_from_paths(batch_size=1024, **kwargs):
    paths = kwargs['paths']
    seperators = kwargs['seperators']
    indices = kwargs['indices']
    engineer_features = kwargs['engineer_features']
    label_dict = kwargs['label_dict']
    rdm_paths = paths.get_rdm(batch_size)
    features = engineer_features(rdm_paths)
    labels = paths2labels(rdm_paths, seperators, indices)
    labels = map_via_dict(labels, label_dict)
    return features, labels

### Creating tf.data.Dataset, that can generate an infinite number of random batches
###                           from 'generate_from_paths'.
ds = GeneratorDataset(generate_from_paths, batch_size=128, epochs=16, **kwargs)()

for batch in ds.take(1):
    x, y = batch
    print(x.shape, y.shape)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlm8s-1.0.3.3.tar.gz (102.1 kB view hashes)

Uploaded Source

Built Distribution

mlm8s-1.0.3.3-py3-none-any.whl (107.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page