Skip to main content

MS2PIP: Accurate and versatile peptide fragmentation spectrum prediction.

Project description

https://github.com/compomics/ms2pip_c/raw/releases/img/ms2pip_logo_1000px.png

https://img.shields.io/github/v/release/compomics/ms2pip_c?include_prereleases&style=flat-square https://img.shields.io/pypi/v/ms2pip?style=flat-square https://img.shields.io/github/actions/workflow/status/compomics/ms2pip_c/test.yml?branch=releases&label=tests&style=flat-square https://img.shields.io/github/actions/workflow/status/compomics/ms2pip_c/build_and_publish.yml?style=flat-square https://img.shields.io/github/issues/compomics/ms2pip_c?style=flat-square https://img.shields.io/github/last-commit/compomics/ms2pip_c?style=flat-square https://img.shields.io/github/license/compomics/ms2pip_c?style=flat-square https://img.shields.io/twitter/follow/compomics?style=social

MS²PIP: MS2 Peak Intensity Prediction - Fast and accurate peptide fragmentation spectrum prediction for multiple fragmentation methods, instruments and labeling techniques.


About

MS²PIP is a tool to predict MS2 peak intensities from peptide sequences. The result is a predicted peptide fragmentation spectrum that accurately resembles its observed equivalent. These predictions can be used to validate peptide identifications, generate proteome-wide spectral libraries, or to select discriminative transitions for targeted proteomics. MS²PIP employs the XGBoost machine learning algorithm and is written in Python and C.

https://raw.githubusercontent.com/compomics/ms2pip/v4.0.0/img/mirror-DVAQIFNNILR-2.png

Mirror plot of an observed (top) and MS²PIP-predicted (bottom) spectrum for the peptide DVAQIFNNILR/2.

You can install MS²PIP on your machine by following the installation instructions. For a more user-friendly experience, go to the MS²PIP web server. There, you can easily upload a list of peptide sequences, after which the corresponding predicted MS2 spectra can be downloaded in multiple file formats. The web server can also be contacted through the RESTful API.

The MS³PIP Python application can perform the following tasks:

  • predict-single: Predict fragmentation spectrum for a single peptide and optionally visualize the spectrum.

  • predict-batch: Predict fragmentation spectra for a batch of peptides.

  • predict-library: Predict a spectral library from protein FASTA file.

  • correlate: Compare predicted and observed intensities and optionally compute correlations.

  • correlate-single: Compare predicted and observed intensities for a single peptide spectrum.

  • get-training-data: Extract feature vectors and target intensities from observed spectra for training.

  • annotate-spectra: Annotate peaks in observed spectra.

MS²PIP supports a wide range of PSM input formats and spectrum output formats, and includes pre-trained models for multiple fragmentation methods, instruments and labeling techniques. See Usage for more information.

Citations

If you use MS²PIP for your research, please cite the following publication:

  • Declercq, A., Bouwmeester, R., Chiva, C., Sabidó, E., Hirschler, A., Carapito, C., Martens, L., Degroeve, S., Gabriels, R. (2023). Updated MS²PIP web server supports cutting-edge proteomics applications. Nucleic Acids Research doi:10.1093/nar/gkad335

Prior MS²PIP publications:

  • Gabriels, R., Martens, L., & Degroeve, S. (2019). Updated MS²PIP web server delivers fast and accurate MS2 peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques. Nucleic Acids Research doi:10.1093/nar/gkz299

  • Degroeve, S., Maddelein, D., & Martens, L. (2015). MS²PIP prediction server: compute and visualize MS2 peak intensity predictions for CID and HCD fragmentation. _Nucleic Acids Research, 43(W1), W326–W330. doi:10.1093/nar/gkv542

  • Degroeve, S., & Martens, L. (2013). MS²PIP: a tool for MS/MS peak intensity prediction. Bioinformatics (Oxford, England), 29(24), 3199–203. doi:10.1093/bioinformatics/btt544

Please also take note of, and mention, the MS²PIP version you used.

Full documentation

The full documentation, including installation instructions, usage examples, and the command-line and Python API reference, can be found at ms2pip.readthedocs.io.

Contributing

Bugs, questions or suggestions? Feel free to post an issue in the issue tracker or to make a pull request. Any contribution, small or large, is welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ms2pip-4.1.1.tar.gz (5.5 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

ms2pip-4.1.1-cp313-cp313-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.13Windows x86-64

ms2pip-4.1.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.1.1-cp313-cp313-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

ms2pip-4.1.1-cp312-cp312-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.12Windows x86-64

ms2pip-4.1.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.1.1-cp312-cp312-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

ms2pip-4.1.1-cp311-cp311-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.11Windows x86-64

ms2pip-4.1.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.1.1-cp311-cp311-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

ms2pip-4.1.1-cp310-cp310-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.10Windows x86-64

ms2pip-4.1.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.1.1-cp310-cp310-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

ms2pip-4.1.1-cp39-cp39-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.9Windows x86-64

ms2pip-4.1.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.1.1-cp39-cp39-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

File details

Details for the file ms2pip-4.1.1.tar.gz.

File metadata

  • Download URL: ms2pip-4.1.1.tar.gz
  • Upload date:
  • Size: 5.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for ms2pip-4.1.1.tar.gz
Algorithm Hash digest
SHA256 068e0ed15a4d0d3d1fd6ac2ab2be319551ed02a4c874c42a0b2850f180c66518
MD5 68cf02e2bf1cf143ffd16c15d8d1b2d8
BLAKE2b-256 7822ec2aa81ad63cbdbac9e8e45258eac8fe94c6665dcb768c78b614730dd3a0

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: ms2pip-4.1.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for ms2pip-4.1.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 2ae4d3f9cec9e65dc5ca963242c1cb2ac1035d5292fc1a4ad4b2e1412560ce38
MD5 6eecc95d5b2fbbf0305bee93b29e9f0d
BLAKE2b-256 8d6ee32afaa9f5829ecd8b6bff26d242096a8be96741d23b567e95e38d57189c

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.1.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d1a24a95d498aa007e198b4231709827bb20eab142c6ce6f039d0b15f0813fb
MD5 68178089df86abc17c91d8c3c7206011
BLAKE2b-256 8b85ca9ee4d242013f5941adc0920ead07bf7f2303c3788dd0f38ab86d9ced3a

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms2pip-4.1.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 51da0e51e583bac396ef1e58b0b9e653fc9e75e78ce125a20eb4cacabcce8bbf
MD5 6b1d9764920f92dc134d810045026fcb
BLAKE2b-256 a4420f4235bc895fbeb53fa4c414bf1dc784a45529fbed9239e8b64d3d1501cc

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: ms2pip-4.1.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for ms2pip-4.1.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 911248644b99df089bc224c0f870c4d6c35cbd931da0870051ed82ea32f743c7
MD5 a713e13d5386404f233e5a28cb622991
BLAKE2b-256 7f62137251bbf08a796f645e3ca57d6226c2679a6cec9e4f53bef13802555480

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.1.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee728971de8708ed25111a7a998dd2c146f9abab1578dd26fbb84dc3617b5da8
MD5 ae11e59ef624fe9cbd0fe4ec186ce1d1
BLAKE2b-256 0d4a489518585dc8cc48455acdbddbe6f1cc51ee6a1e2a141c51307d7916ecae

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms2pip-4.1.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 67e686bedad35bf8359a3d35d2cb44cc15083c3bdc1390d8e39f7988143de59b
MD5 98bd9b6547a1a9c339e5d16e7adb05ca
BLAKE2b-256 f498ceffbe82b301d1b6fa822a8aefdf0ac7e29a499e00149f40e25ef4daba03

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: ms2pip-4.1.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for ms2pip-4.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5f9f675a29e798bc97a064f4eda71bdd90e75bdb7fb57f91b50687753e19e756
MD5 41f13bd3c41f34fe28306b604bda17e3
BLAKE2b-256 ba988bc7e0eaf2434f518044dce4eefed3974c84ca32d45b2b4b55963650fa81

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.1.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d48d9910b78a4ff8c7685b09466803cb0f4570ef9779c2cb6d70cae118d6a56
MD5 4225f26e348cea946c8ecd7cfa9f7dc6
BLAKE2b-256 0884f2767787f8ddfcea8b35340dd347f0b1b6aed30a696c452e63261af99a64

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms2pip-4.1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 92194e9d449d4fe9aac10539c74792536badb1aadf1908a0c92029e26d6ec3ce
MD5 ef8a19126d2affa06183f9d4dcb7ee31
BLAKE2b-256 8439f71ff786b0a497359bc0bfe26cc6b8f5f8aab0ebc898122d03276afa2e95

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: ms2pip-4.1.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for ms2pip-4.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d13de05438879666ba61fa7063874cac2cfa7fd883c516726d30b27f0b83e62f
MD5 d3427e3f513ca39fb4c7c7a6498d24a9
BLAKE2b-256 4ebd899e1ee0f1146458806d57dd99699207336e6b6666d076a8d02ff3e1b100

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.1.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67b319375af64a1900da67de4f6ce78abb14e8b0c6cf5e719e07cafc2f731954
MD5 21e8b58bdec722f79ae5bdc1f31d4f30
BLAKE2b-256 182310506a9444ccbd5fd9fdffa60077b87eb3e1bea068a352ed3af7c470f64f

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms2pip-4.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa437e6ed7b663ed2dc276065aca650bf9eb9131cbeb7418bccaecb76419c89c
MD5 3470b2741cc4b13224172af81b6389b5
BLAKE2b-256 b3033c4f22e9c1f4fe8fadce5c854597f530f44fb350c0f4a242bcfd5ad801b5

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ms2pip-4.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for ms2pip-4.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0ff174beb3c9fad3e75979bb18003354fabd1ec4e43e596560283534d7061665
MD5 3bb61d25d77a3e56642e553fb8d18568
BLAKE2b-256 2a935d07612e0756b73a735e4fa297a5a0802778e9cea8de7aa53ecb46dd86d3

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.1.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9cd565e511dae4451b235cf1ea415979b3c487ac2750fe9448ee5a79129d75be
MD5 850c9767a0bffbbf4f8e61fadc9520d0
BLAKE2b-256 3ae7fbe24b6192fcb1000bf2b89e3bdc747c07b64cf7e1f5f38d395fce1d41e6

See more details on using hashes here.

File details

Details for the file ms2pip-4.1.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms2pip-4.1.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4ed5de95f5065b1ef73d840c4802d3b4fcfb7ef35f74500a4f8c75e708f94f7a
MD5 f09f60634a97093b6f50b687cdd389cf
BLAKE2b-256 73608c9ae08f8db1d35b8055df83e0d5717c7bb3b58a821d7776b100b537d308

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page