Skip to main content

MS2PIP: Accurate and versatile peptide fragmentation spectrum prediction.

Project description

https://github.com/compomics/ms2pip_c/raw/releases/img/ms2pip_logo_1000px.png

https://img.shields.io/github/v/release/compomics/ms2pip_c?include_prereleases&style=flat-square https://img.shields.io/pypi/v/ms2pip?style=flat-square https://img.shields.io/github/actions/workflow/status/compomics/ms2pip_c/test.yml?branch=releases&label=tests&style=flat-square https://img.shields.io/github/actions/workflow/status/compomics/ms2pip_c/build_and_publish.yml?style=flat-square https://img.shields.io/github/issues/compomics/ms2pip_c?style=flat-square https://img.shields.io/github/last-commit/compomics/ms2pip_c?style=flat-square https://img.shields.io/github/license/compomics/ms2pip_c?style=flat-square https://img.shields.io/twitter/follow/compomics?style=social

MS²PIP: MS2 Peak Intensity Prediction - Fast and accurate peptide fragmentation spectrum prediction for multiple fragmentation methods, instruments and labeling techniques.


About

MS²PIP is a tool to predict MS2 peak intensities from peptide sequences. The result is a predicted peptide fragmentation spectrum that accurately resembles its observed equivalent. These predictions can be used to validate peptide identifications, generate proteome-wide spectral libraries, or to select discriminative transitions for targeted proteomics. MS²PIP employs the XGBoost machine learning algorithm and is written in Python and C.

https://raw.githubusercontent.com/compomics/ms2pip/v4.0.0/img/mirror-DVAQIFNNILR-2.png

Mirror plot of an observed (top) and MS²PIP-predicted (bottom) spectrum for the peptide DVAQIFNNILR/2.

You can install MS²PIP on your machine by following the installation instructions. For a more user-friendly experience, go to the MS²PIP web server. There, you can easily upload a list of peptide sequences, after which the corresponding predicted MS2 spectra can be downloaded in multiple file formats. The web server can also be contacted through the RESTful API.

The MS³PIP Python application can perform the following tasks:

  • predict-single: Predict fragmentation spectrum for a single peptide and optionally visualize the spectrum.

  • predict-batch: Predict fragmentation spectra for a batch of peptides.

  • predict-library: Predict a spectral library from protein FASTA file.

  • correlate: Compare predicted and observed intensities and optionally compute correlations.

  • get-training-data: Extract feature vectors and target intensities from observed spectra for training.

  • annotate-spectra: Annotate peaks in observed spectra.

MS²PIP supports a wide range of PSM input formats and spectrum output formats, and includes pre-trained models for multiple fragmentation methods, instruments and labeling techniques. See Usage for more information.

Citations

If you use MS²PIP for your research, please cite the following publication:

  • Declercq, A., Bouwmeester, R., Chiva, C., Sabidó, E., Hirschler, A., Carapito, C., Martens, L., Degroeve, S., Gabriels, R. (2023). Updated MS²PIP web server supports cutting-edge proteomics applications. Nucleic Acids Research doi:10.1093/nar/gkad335

Prior MS²PIP publications:

  • Gabriels, R., Martens, L., & Degroeve, S. (2019). Updated MS²PIP web server delivers fast and accurate MS2 peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques. Nucleic Acids Research doi:10.1093/nar/gkz299

  • Degroeve, S., Maddelein, D., & Martens, L. (2015). MS²PIP prediction server: compute and visualize MS2 peak intensity predictions for CID and HCD fragmentation. _Nucleic Acids Research, 43(W1), W326–W330. doi:10.1093/nar/gkv542

  • Degroeve, S., & Martens, L. (2013). MS²PIP: a tool for MS/MS peak intensity prediction. Bioinformatics (Oxford, England), 29(24), 3199–203. doi:10.1093/bioinformatics/btt544

Please also take note of, and mention, the MS²PIP version you used.

Full documentation

The full documentation, including installation instructions, usage examples, and the command-line and Python API reference, can be found at ms2pip.readthedocs.io.

Contributing

Bugs, questions or suggestions? Feel free to post an issue in the issue tracker or to make a pull request. Any contribution, small or large, is welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ms2pip-4.0.0.dev13.tar.gz (5.5 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

ms2pip-4.0.0.dev13-cp311-cp311-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.11Windows x86-64

ms2pip-4.0.0.dev13-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev13-cp311-cp311-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

ms2pip-4.0.0.dev13-cp311-cp311-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

ms2pip-4.0.0.dev13-cp310-cp310-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.10Windows x86-64

ms2pip-4.0.0.dev13-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev13-cp310-cp310-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

ms2pip-4.0.0.dev13-cp310-cp310-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

ms2pip-4.0.0.dev13-cp39-cp39-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.9Windows x86-64

ms2pip-4.0.0.dev13-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev13-cp39-cp39-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

ms2pip-4.0.0.dev13-cp39-cp39-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

ms2pip-4.0.0.dev13-cp38-cp38-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.8Windows x86-64

ms2pip-4.0.0.dev13-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev13-cp38-cp38-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

ms2pip-4.0.0.dev13-cp38-cp38-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file ms2pip-4.0.0.dev13.tar.gz.

File metadata

  • Download URL: ms2pip-4.0.0.dev13.tar.gz
  • Upload date:
  • Size: 5.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for ms2pip-4.0.0.dev13.tar.gz
Algorithm Hash digest
SHA256 2df6e8e10d9edd7260e2a942946045c0054313d07615a9f5f80cbb03de1cae80
MD5 0848270ff7b3982bfe890bc4dac3c950
BLAKE2b-256 2201534e9377d34d8d22256aa9c0042b6db1e83e571057af4088572e1e35c122

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fed9ae0691926a281b160f0e5419f6b2d2373ef5c86f9434f99bfc346f36cfef
MD5 7498fabf8c7e9d4b2f2bcfa5535938fa
BLAKE2b-256 6c5dbaf125b6d79b11d7bd3f01bccca216227ed238edc50053a2479304206146

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09bfb747aba1fef03f1a78a2af16550a528ed245433a9c2a24ee22a8ccbf6459
MD5 1d289a18e7c26d1ca33936186ab02b8c
BLAKE2b-256 74685bcaa0eee7ef719da1882ac2ace687ae1c5b879abd0ca30de6dd8d951beb

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5e1f26a8310687561d067e4001327a6b5065890d6b8d742aa6472848e6100822
MD5 da6f4ccf6b27f27c75f669aeb1ae9d80
BLAKE2b-256 b4564f6fc07b6ce49a0d9a9d7acdf94f8bd1e0c6d3bddb1bd845259c7b644857

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ee67f819f83aab1806b56b45cfc4ced0c28223698dd7b26ca72e93be925cba5a
MD5 bae61b3eec7b19d1388e2dd19b25e0ac
BLAKE2b-256 ccb9c2bdb15c8bedb8d9ba44a63919679f17b9749148f570d48bbcf72dcfbf4c

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e7f81a3c43fe15894100dc3f4153cf0dda4d89097c6ba0d095f24877d89dffae
MD5 7cd47e615c8f793f78a82fbd923a73ee
BLAKE2b-256 665fb63490138e17c62d989c5830b3667b571f2442e3e1eda65166882f3e0ad5

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dcb157c3ceb879090fb26f5e77ab261a54250fdb443de2642314a13eb49e4041
MD5 1d188fa75fde6a39fbc3255b422a534a
BLAKE2b-256 ea4682aa02c7d8eda9961a02ebe717de46990de613faa32f8166251664ea8637

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 65edc5fad675e974d2019fae54b8bc420e0176ce232798f21b88db07741c5951
MD5 358b1c2c70ac145a916f395d4db21508
BLAKE2b-256 a01441e6f8ea19c5fba3794b5784aabb02243a47d3f9f5ef2e0be5837f549567

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7b74fb01c6504f11b22d91ee0a1984cb482c011c41dbd17b893c79c95d55535c
MD5 fa77ab6f662d9b6bec56d5db9a5b6a29
BLAKE2b-256 5fe88511b31a483429ccfcc8056d51597bde64b855ba68847a165d9b282cfc28

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ms2pip-4.0.0.dev13-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for ms2pip-4.0.0.dev13-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 aa99d565e519a418a2753e71293cb28ea0dac3300a6737348747cf09e32b0266
MD5 34f032e85e15d44b68c1d09b53837f7e
BLAKE2b-256 55cdd5805f5573db5b9bca2d301a2c5f43025e203b83e6f36f4dba0504da294a

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 557ef4c1bb3d8ee04bbb29834f6270adad1f839d15138730f6f0756d6840c400
MD5 def84098c99c451670ad68c1ef61e936
BLAKE2b-256 a9c356b054c91ce53fc37944791b88df7732a37c73f17bbc937c7a38b1014f2c

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5f88ab6df6bb9f711fc5105924df027d222d491a2acf34586c229a315b1815bc
MD5 da416b17618cb602e921fca4716764eb
BLAKE2b-256 f7789f4b8aff2ba42c77ff733178b558731dbb79ed81e725c55b32bb239b1d5e

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f8a5f0327b58ab7a3907c8f6e927076aa807c4f9e0a68e1ee41b7ec6b3e7f65
MD5 2b1c6ca892ac21f6df038eae9cb21446
BLAKE2b-256 586793265c47f8b810bfed5ad4a15c68651d1c93ca08518158e1b61d5df35fde

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ms2pip-4.0.0.dev13-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for ms2pip-4.0.0.dev13-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dceb52682c8c596f4614b828effa4aed8d663262f503dc4eda850c4896518df0
MD5 1d08cd3b58a853b476aa767e9adf2079
BLAKE2b-256 033eb64482db4d0d48993f9315fcf880a587427f6069d742f10eb38d6aa96f01

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5daee26e327ebd76fd2387519bb8ca68f4e491bd3936b8c18b6dad345046a59
MD5 0494dd314b1ab1d3cae20c494b5a44df
BLAKE2b-256 f44dff23c4cef02890011309c2e82c8603d385358328018581ae874140bc0e96

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a84734c92204ccdf3963de539d0b958114c30212ddcbfe6ade02203bf6c83ece
MD5 b273cdcd3cef461458ea9702c2f90f4b
BLAKE2b-256 e20652c13946562b8fc5514bf80a7f956d5e995714d29e313390743b1bc0aa5c

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev13-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev13-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a819ae6df396ec3ea9e6d9cfa2cb7e5b77d9d22944481724af3446c2d79e78bb
MD5 a9a476e91b59ea8539f8cae20ffa40b6
BLAKE2b-256 e3826eeb357de4e4998a863a8c2b2b4af3c6277764f13c6d26ccf12c02923146

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page