Skip to main content

MS2PIP: Accurate and versatile peptide fragmentation spectrum prediction.

Project description

https://github.com/compomics/ms2pip_c/raw/releases/img/ms2pip_logo_1000px.png

https://img.shields.io/github/v/release/compomics/ms2pip_c?include_prereleases&style=flat-square https://img.shields.io/pypi/v/ms2pip?style=flat-square https://img.shields.io/github/actions/workflow/status/compomics/ms2pip_c/test.yml?branch=releases&label=tests&style=flat-square https://img.shields.io/github/actions/workflow/status/compomics/ms2pip_c/build_and_publish.yml?style=flat-square https://img.shields.io/github/issues/compomics/ms2pip_c?style=flat-square https://img.shields.io/github/last-commit/compomics/ms2pip_c?style=flat-square https://img.shields.io/github/license/compomics/ms2pip_c?style=flat-square https://img.shields.io/twitter/follow/compomics?style=social

MS²PIP: MS2 Peak Intensity Prediction - Fast and accurate peptide fragmentation spectrum prediction for multiple fragmentation methods, instruments and labeling techniques.


About

MS²PIP is a tool to predict MS2 peak intensities from peptide sequences. The result is a predicted peptide fragmentation spectrum that accurately resembles its observed equivalent. These predictions can be used to validate peptide identifications, generate proteome-wide spectral libraries, or to select discriminative transitions for targeted proteomics. MS²PIP employs the XGBoost machine learning algorithm and is written in Python and C.

https://raw.githubusercontent.com/compomics/ms2pip/v4.0.0/img/mirror-DVAQIFNNILR-2.png

Mirror plot of an observed (top) and MS²PIP-predicted (bottom) spectrum for the peptide DVAQIFNNILR/2.

You can install MS²PIP on your machine by following the installation instructions. For a more user-friendly experience, go to the MS²PIP web server. There, you can easily upload a list of peptide sequences, after which the corresponding predicted MS2 spectra can be downloaded in multiple file formats. The web server can also be contacted through the RESTful API.

The MS³PIP Python application can perform the following tasks:

  • predict-single: Predict fragmentation spectrum for a single peptide and optionally visualize the spectrum.

  • predict-batch: Predict fragmentation spectra for a batch of peptides.

  • predict-library: Predict a spectral library from protein FASTA file.

  • correlate: Compare predicted and observed intensities and optionally compute correlations.

  • get-training-data: Extract feature vectors and target intensities from observed spectra for training.

MS²PIP supports a wide range of PSM input formats and spectrum output formats, and includes pre-trained models for multiple fragmentation methods, instruments and labeling techniques. See Usage for more information.

Citations

If you use MS²PIP for your research, please cite the following publication:

  • Declercq, A., Bouwmeester, R., Chiva, C., Sabidó, E., Hirschler, A., Carapito, C., Martens, L., Degroeve, S., Gabriels, R. (2023). Updated MS²PIP web server supports cutting-edge proteomics applications. Nucleic Acids Research doi:10.1093/nar/gkad335

Prior MS²PIP publications:

  • Gabriels, R., Martens, L., & Degroeve, S. (2019). Updated MS²PIP web server delivers fast and accurate MS2 peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques. Nucleic Acids Research doi:10.1093/nar/gkz299

  • Degroeve, S., Maddelein, D., & Martens, L. (2015). MS²PIP prediction server: compute and visualize MS2 peak intensity predictions for CID and HCD fragmentation. _Nucleic Acids Research, 43(W1), W326–W330. doi:10.1093/nar/gkv542

  • Degroeve, S., & Martens, L. (2013). MS²PIP: a tool for MS/MS peak intensity prediction. Bioinformatics (Oxford, England), 29(24), 3199–203. doi:10.1093/bioinformatics/btt544

Please also take note of, and mention, the MS²PIP version you used.

Full documentation

The full documentation, including installation instructions, usage examples, and the command-line and Python API reference, can be found at ms2pip.readthedocs.io.

Contributing

Bugs, questions or suggestions? Feel free to post an issue in the issue tracker or to make a pull request. Any contribution, small or large, is welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ms2pip-4.0.0.dev1.tar.gz (5.5 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

ms2pip-4.0.0.dev1-cp310-cp310-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.10Windows x86-64

ms2pip-4.0.0.dev1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev1-cp310-cp310-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

ms2pip-4.0.0.dev1-cp39-cp39-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.9Windows x86-64

ms2pip-4.0.0.dev1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev1-cp39-cp39-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

ms2pip-4.0.0.dev1-cp38-cp38-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.8Windows x86-64

ms2pip-4.0.0.dev1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev1-cp38-cp38-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file ms2pip-4.0.0.dev1.tar.gz.

File metadata

  • Download URL: ms2pip-4.0.0.dev1.tar.gz
  • Upload date:
  • Size: 5.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for ms2pip-4.0.0.dev1.tar.gz
Algorithm Hash digest
SHA256 af4e833d930a2890e803e9e5d61311ae09d92a87fc3c957ddcc6efc49a5af1e4
MD5 96c9d95c20ae1f22ddc005168450ecb7
BLAKE2b-256 14dd815ff0f158c02254857dc095c9bf851f9afcaa13a0649f9b18828c2b84e2

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7a9b1a9bb26588021189accff31092744e6e27fb185f2da4f52febce9e8c0faf
MD5 8ac8eab6b7732b5ba73fe704294e718e
BLAKE2b-256 a04d4b213ed5bdcba227b667a333290c5290c26d9f1f4f0b3ea421d334d3f43c

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f61951718266c5ce1f9e1ed1c858abf899219692ae9bb986692a0a5a0e76d67
MD5 6080d8123a32d9c6ffcecfed4b0073f8
BLAKE2b-256 66d1731d8d0aafbd43d6c4f7aec46b13511269f571f950aa410317815d6db05f

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f4a1d3f3988311ca6e0154155e76caa5b816d91e6db534f9ff446c7f6bd64fba
MD5 6c74d137ec3a4a246c25a759c18ef6e6
BLAKE2b-256 1f87f30898f0246a97bb5be944f4ba9abdb17da84a813759f48b4773074fa8f9

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ms2pip-4.0.0.dev1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for ms2pip-4.0.0.dev1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 35d7e5e5a38e6718e3777d634921941143517c5e2658aeb3d0df516f2b1b96d1
MD5 fcfabca8fe198883bdfbb2d9cb31538b
BLAKE2b-256 4d29334863a87eea4c583c038680d8e8cc0212857e02c865e8ac1b14faa77345

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 042e74674b2a12227656ca07ed942cabbf4456b4cd5644acac7eeafacdad7435
MD5 37be46a33ea75754c1af9ad09af174a0
BLAKE2b-256 50d47115e37ef7af83a4cf7c8581bcbc60d2489b59762848ee22a9f5517ab1ae

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69c02414a6ffb3604326c273c7dbf05910aa0b7d79d7030cb7a0997b7c6f5e3d
MD5 59e85729d5e2f680cd977a88488d49cb
BLAKE2b-256 590beadc5cb2f2ec20934d80ee0d62b4a6fe9006e1c678ac086350645cc8894b

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ms2pip-4.0.0.dev1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for ms2pip-4.0.0.dev1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 acaea066514d75eba3f96c015a821ce81c4e7c7f4cbfc8432737be05789085d7
MD5 5982a3bf747e3e0bf5db79c39fc059b0
BLAKE2b-256 5af7004085507aec2503e41c9a3cd004770255dc382d28237c2ad4c88d265ccb

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e3f14db5300a5a231ed8cd2a75a6bcd0ca291f6e1e25ffdf06d9e96cdf8cdfbf
MD5 cdd370252692255d2e4a5e2f09d3d6d5
BLAKE2b-256 991a0bf909af923d69d6eb6cfcb4fb21f99f032c6e1005202db497221e5bb8c7

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b5e491864903efde2db5ba1a62bd8042640273ba8da274ea5d1d8fdccc1689b6
MD5 b3e932fdc9d009cd6bfbbdc20b4bb286
BLAKE2b-256 6f44d2038207c7492ea57e24f7e9122f72fb01fb330a604e6ffd7ac1b6a053c6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page