Skip to main content

A plugin that enables 3D image segmentation provided by Allen Institute for Cell Science

Project description

napari-allencell-segmenter

License PyPI Python Version tests codecov

A plugin that enables 3D image segmentation provided by Allen Institute for Cell Science

The Allen Cell & Structure Segmenter plugin for napari provides an intuitive graphical user interface to access the powerful segmentation capabilities of an open source 3D segmentation software package developed and maintained by the Allen Institute for Cell Science (classic workflows only with v1.0). ​The Allen Cell & Structure Segmenter is a Python-based open source toolkit developed at the Allen Institute for Cell Science for 3D segmentation of intracellular structures in fluorescence microscope images. This toolkit brings together classic image segmentation and iterative deep learning workflows first to generate initial high-quality 3D intracellular structure segmentations and then to easily curate these results to generate the ground truths for building robust and accurate deep learning models. The toolkit takes advantage of the high replicate 3D live cell image data collected at the Allen Institute for Cell Science of over 30 endogenous fluorescently tagged human induced pluripotent stem cell (hiPSC) lines. Each cell line represents a different intracellular structure with one or more distinct localization patterns within undifferentiated hiPS cells and hiPSC-derived cardiomyocytes.

More details about Segmenter can be found at https://allencell.org/segmenter


This napari plugin was generated with Cookiecutter using with @napari's cookiecutter-napari-plugin template.

Installation

Option 1 (recommended):

After you installed the lastest version of napari, you can go to "Plugins" --> "Install/Uninstall Package(s)". Then, you will be able to see all available napari plugins and you can find us by name napari-allencell-segmenter. Just click the "install" button to install the Segmenter plugin.

Option 2:

You can also install napari-allencell-segmenter via pip:

pip install napari-allencell-segmenter

Quick Start

In the current version, there are two parts in the plugin: workflow editor and batch processing. The workflow editor allows users adjusting parameters in all the existing workflows in the lookup table, so that the workflow can be optimized on users' data. The adjusted workflow can be saved and then applied to a large batch of files using the batch processing part of the plugin.

  1. Open a file in napari (the plugin is able to support multi-dimensional data in .tiff, .tif. ome.tif, .ome.tiff, .czi)
  2. Start the plugin (open napari, go to "Plugins" --> "napari-allencell-segmenter" --> "workflow editor")
  3. Select the image and channel to work on
  4. Select a workflow based on the example image and target segmentation based on user's data. Ideally, it is recommend to start with the example with very similar morphology as user's data.
  5. Click "Run All" to execute the whole workflow on the sample data.
  6. Adjust the parameters of steps, based on the intermediate results. For instruction on the details on each function and the effect of each parameter, click the tooltip button. A complete list of all functions can be found here
  7. Click "Run All" again after adjusting the parameters and repeat step 6 and 7 until the result is satisfactory.
  8. Save the workflow
  9. Close the plugin and open the batch processing part by (go to "Plugins" --> "napari-allencell-segmenter" --> "batch processing")
  10. Load the customized workflow (or an off-the-shelf workflow) json file
  11. Load the folder with all the images to process
  12. Click "Run"

Contributing

Contributions are very welcome. Tests can be run with tox, please ensure the coverage at least stays the same before you submit a pull request.

License

Distributed under the terms of the BSD-3 license, "napari-allencell-segmenter" is free and open source software

Issues

If you encounter any problems, please file an issue along with a detailed description.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

napari-allencell-segmenter-2.0.0.dev0.tar.gz (54.4 kB view details)

Uploaded Source

Built Distribution

napari_allencell_segmenter-2.0.0.dev0-py2.py3-none-any.whl (77.6 kB view details)

Uploaded Python 2Python 3

File details

Details for the file napari-allencell-segmenter-2.0.0.dev0.tar.gz.

File metadata

File hashes

Hashes for napari-allencell-segmenter-2.0.0.dev0.tar.gz
Algorithm Hash digest
SHA256 aa95c80dda3a5eda99947730bb2dcb4f695d6440d9a4b61d4d229b105866dbc2
MD5 b322feeffd34ca253b481b6160620c22
BLAKE2b-256 f8ab84e2b9f2be894ddbb05dcf7fa2ec5426bbde799c88ad9bbe53988d38a4a1

See more details on using hashes here.

File details

Details for the file napari_allencell_segmenter-2.0.0.dev0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for napari_allencell_segmenter-2.0.0.dev0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 bd3ec1378106411e54eda10c1dc2a742fed1bc264f3622c54f96b7f65b7ea4e3
MD5 031e3ca08373ba63d090264579a87531
BLAKE2b-256 0a2a980e9fc537e29db8a027555e053e701aed5c1af3c2c048cbd1c750f4df59

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page