Skip to main content

A neural network compiler for AI accelerators

Project description

nncase

GitHub repository Gitee repository GitHub release

nncase is a neural network compiler for AI accelerators.

nncase 是一个为 AI 加速器设计的神经网络编译器。

技术交流 QQ 群:790699378

Telegram: nncase community

Install from binaries

从二进制安装

Download prebuilt binaries from Release.

下载预编译的二进制文件 Release

Build from source

从源码编译

Build from source

Supported operators

支持的算子

K210/K510

K230

Resources

资源

K210


Architecture

架构

nncase arch

Features

  • Supports multiple inputs and outputs and multi-branch structure
  • Static memory allocation, no heap memory acquired
  • Operators fusion and optimizations
  • Support float and quantized uint8 inference
  • Support post quantization from float model with calibration dataset
  • Flat model with zero copy loading

功能

  • 支持多输入输出网络,支持多分支结构
  • 静态内存分配,不需要堆内存
  • 算子合并和优化
  • 支持 float 和量化 uint8 推理
  • 支持训练后量化,使用浮点模型和量化校准集
  • 平坦模型,支持零拷贝加载

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nncase-2.6.0-cp310-cp310-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

nncase-2.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nncase-2.6.0-cp310-cp310-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

nncase-2.6.0-cp39-cp39-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

nncase-2.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nncase-2.6.0-cp39-cp39-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

nncase-2.6.0-cp38-cp38-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

nncase-2.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nncase-2.6.0-cp38-cp38-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

nncase-2.6.0-cp37-cp37m-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

nncase-2.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nncase-2.6.0-cp37-cp37m-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file nncase-2.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nncase-2.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d0658996016dfe0b3fb06d84991e232715148037284902363f3f28fe7ce23f37
MD5 057a6204127673d30db991f23414e067
BLAKE2b-256 19c28c268ca92ce597d6663fa44686197dbe7c7d9f4751480749a09c0d11b1ea

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23ec7a9de96731a5d8e4a12456010ba9a5b3f61578cafeb47079ed527782f253
MD5 fb90d3078c3b19eab8d461d107095783
BLAKE2b-256 f7a70f8bcd15c417c914077cc2662d8ff7e6d351eca83d79a5d401f3fced7c8d

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.6.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.6.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7ac8deecbf5edda95bf20782e9634441f4e98f1de70ea8963ff8cc5e4dc9875b
MD5 3ad109f8eac1ac2ad94adc34c7c7c6bb
BLAKE2b-256 af8f85216b3a5216284e6a0952ed0570bd963d76bf7ab1b3b531b21c4eb2e26d

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nncase-2.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 caa45556f6b747908f46e1af890dc94dfe49a487bead98c10b08f7ec45ee1ed6
MD5 d1411f1abdbe9c556c776f04b78a9aae
BLAKE2b-256 c3cf3fc05af4ff002621f364dc28ac4575ba4212d8c8c6f7e37383a4462b47f9

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aef91d467bfd36f193439dfbb60f7f0c17ecf0306a7461c2e74890ffd4f9b697
MD5 17fbb168b0bb3aa2a83d8d538f0f5311
BLAKE2b-256 7aaebc757c5bb52fba93661c0be7c4c0c25c5d293a9b8056d9b83c2928fff974

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.6.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.6.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 03deb6b886347675a33d58e5c521d6de31587f03f1f67af067b83855c97a7bcc
MD5 2c7fca6bc14102164ca3af9a5a66907a
BLAKE2b-256 87a818b21ebe70e60032e813d14be996d066ea36a4e3966531929d74188fb732

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nncase-2.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d6ea2b839303d5a342dd65e94b798fbe3792aeeadf059b6a1d4619e124347296
MD5 45f7641a2735afcc436a06ccfb30279c
BLAKE2b-256 7500a121694524e6c1d7ad6d9332fec7c036e5293a94e043ddc4d0b4aa5a9a4b

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 408ce55ef28cb38d115ae3491006cfcfa5ba3b2c0e2153d27b0a909da9618b3b
MD5 8396f4b2ef6230b967d7cea636e54d42
BLAKE2b-256 47a11318f18cc85bff1bac3ba857b43a2e8a441aad7fe6e9a3e91875c839f97b

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.6.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.6.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c43c193739595de21cef96f2abac3e821af4a408767cc963e992186b04293574
MD5 98d4ccd8ecca37b807e1bd7a421436e3
BLAKE2b-256 f92647c7e7a05bfa74df566430d44c646f66b2afb9226ab903b84d8dac9fcdce

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.6.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nncase-2.6.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c8aa091c3925869d2a3dea249529e7b40fd015f01ff7c59cd23d290fa9f15b49
MD5 105e05cba6f245e9ff0191effe1a4f8a
BLAKE2b-256 6952eedf78018311450e4d9dfd9aca4d10c797bcbbaea7e65a55f2925dcae4f9

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59d2331f2212432cce7b36d797b72dc5c369cf3d632fd8d57c5aa82f33b8ffe7
MD5 28e6c05988e1d2f3438542a7afc88558
BLAKE2b-256 b0cd20f4fdeaeffbb01932931d8fba93f13b50edf59561a2a9f9cdcc17bf5281

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.6.0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.6.0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 17d7b98aaaac50a351b4048df5b504205e684d94c2af16113f8d4d36c474e244
MD5 5def5373884f444d09222bd9a225b7b6
BLAKE2b-256 a8b8060d99180fc63548c08ef0dcbcba62ee9b2f87cf07998a3f84e81b02f8f7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page