Skip to main content

A neural network compiler for AI accelerators

Project description

nncase

GitHub repository Gitee repository GitHub release

切换中文

nncase is a neural network compiler for AI accelerators.

Telegram: nncase community Technical Discussion QQ Group: 790699378 . Answer: 人工智能


Tips

  • [2024/05/28] [BUG] nncase v2.8.3: ReduceSum(onnx) has a BUG that causes segmentfault. Please downgrade to v2.8.2, if your model has ReduceSum.

K230

Install

  • Linux:

    pip install nncase nncase-kpu
    
  • Windows:

    1. pip install nncase
    2. Download `nncase_kpu-2.x.x-py2.py3-none-win_amd64.whl` in below link.
    3. pip install nncase_kpu-2.x.x-py2.py3-none-win_amd64.whl
    

All version of nncase and nncase-kpu in Release.

Supported operators

benchmark test

kind model shape quant_type(If/W) nncase_fps tflite_onnx_result accuracy info
Image Classification mobilenetv2 [1,224,224,3] u8/u8 600.24 top-1 = 71.3%
top-5 = 90.1%
top-1 = 71.1%
top-5 = 90.0%
dataset(ImageNet 2012, 50000 images)
tflite
resnet50V2 [1,3,224,224] u8/u8 86.17 top-1 = 75.44%
top-5 = 92.56%
top-1 = 75.11%
top-5 = 92.36%
dataset(ImageNet 2012, 50000 images)
onnx
yolov8s_cls [1,3,224,224] u8/u8 130.497 top-1 = 72.2%
top-5 = 90.9%
top-1 = 72.2%
top-5 = 90.8%
dataset(ImageNet 2012, 50000 images)
yolov8s_cls(v8.0.207)
Object Detection yolov5s_det [1,3,640,640] u8/u8 23.645 bbox
mAP50-90 = 0.374
mAP50 = 0.567
bbox
mAP50-90 = 0.369
mAP50 = 0.566
dataset(coco val2017, 5000 images)
yolov5s_det(v7.0 tag, rect=False, conf=0.001, iou=0.65)
yolov8s_det [1,3,640,640] u8/u8 9.373 bbox
mAP50-90 = 0.446
mAP50 = 0.612
mAP75 = 0.484
bbox
mAP50-90 = 0.404
mAP50 = 0.593
mAP75 = 0.45
dataset(coco val2017, 5000 images)
yolov8s_det(v8.0.207, rect = False)
Image Segmentation yolov8s_seg [1,3,640,640] u8/u8 7.845 bbox
mAP50-90 = 0.444
mAP50 = 0.606
mAP75 = 0.484
segm
mAP50-90 = 0.371
mAP50 = 0.578
mAP75 = 0.396
bbox
mAP50-90 = 0.444
mAP50 = 0.606
mAP75 = 0.484
segm
mAP50-90 = 0.371
mAP50 = 0.579
mAP75 = 0.397
dataset(coco val2017, 5000 images)
yolov8s_seg(v8.0.207, rect = False, conf_thres = 0.0008)
Pose Estimation yolov8n_pose_320 [1,3,320,320] u8/u8 36.066 bbox
mAP50-90 = 0.6
mAP50 = 0.843
mAP75 = 0.654
keypoints
mAP50-90 = 0.358
mAP50 = 0.646
mAP75 = 0.353
bbox
mAP50-90 = 0.6
mAP50 = 0.841
mAP75 = 0.656
keypoints
mAP50-90 = 0.359
mAP50 = 0.648
mAP75 = 0.357
dataset(coco val2017, 2346 images)
yolov8n_pose(v8.0.207, rect = False)
yolov8n_pose_640 [1,3,640,640] u8/u8 10.88 bbox
mAP50-90 = 0.694
mAP50 = 0.909
mAP75 = 0.776
keypoints
mAP50-90 = 0.509
mAP50 = 0.798
mAP75 = 0.544
bbox
mAP50-90 = 0.694
mAP50 = 0.909
mAP75 = 0.777
keypoints
mAP50-90 = 0.508
mAP50 = 0.798
mAP75 = 0.54
dataset(coco val2017, 2346 images)
yolov8n_pose(v8.0.207, rect = False)
yolov8s_pose [1,3,640,640] u8/u8 5.568 bbox
mAP50-90 = 0.733
mAP50 = 0.925
mAP75 = 0.818
keypoints
mAP50-90 = 0.605
mAP50 = 0.857
mAP75 = 0.666
bbox
mAP50-90 = 0.734
mAP50 = 0.925
mAP75 = 0.819
keypoints
mAP50-90 = 0.604
mAP50 = 0.859
mAP75 = 0.669
dataset(coco val2017, 2346 images)
yolov8s_pose(v8.0.207, rect = False)

Demo

|eye gaze | space_resize | face pose || |---|---|---| |gif | gif| |


K210/K510

Supported operators


Features

  • Supports multiple inputs and outputs and multi-branch structure
  • Static memory allocation, no heap memory acquired
  • Operators fusion and optimizations
  • Support float and quantized uint8 inference
  • Support post quantization from float model with calibration dataset
  • Flat model with zero copy loading

Architecture

nncase arch

Build from source

It is recommended to install nncase directly through pip. At present, the source code related to k510 and K230 chips is not open source, so it is not possible to use nncase-K510 and nncase-kpu (K230) directly by compiling source code.

If there are operators in your model that nncase does not yet support, you can request them in the issue or implement them yourself and submit the PR. Later versions will be integrated, or contact us to provide a temporary version. Here are the steps to compile nncase.

git clone https://github.com/kendryte/nncase.git
cd nncase
mkdir build && cd build

# Use Ninja
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install
ninja && ninja install

# Use make
cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install
make && make install

Resources

Canaan developer community

Canaan developer community contains all resources related to K210, K510, and K230.

  • 资料下载 --> Pre-compiled images available for the development boards corresponding to the three chips.
  • 文档 --> Documents corresponding to the three chips.
  • 模型库 --> Examples and code for industrial, security, educational and other scenarios that can be run on the K210 and K230.
  • 模型训练 --> The model training platform for K210 and K230 supports the training of various scenarios.

Bilibili

K210 related repo

K230 related repo


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nncase-2.9.0-cp310-cp310-win_amd64.whl (19.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

nncase-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nncase-2.9.0-cp310-cp310-macosx_10_15_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

nncase-2.9.0-cp39-cp39-win_amd64.whl (19.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

nncase-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nncase-2.9.0-cp39-cp39-macosx_10_15_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

nncase-2.9.0-cp38-cp38-win_amd64.whl (19.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

nncase-2.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nncase-2.9.0-cp38-cp38-macosx_10_15_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

nncase-2.9.0-cp37-cp37m-win_amd64.whl (19.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

nncase-2.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nncase-2.9.0-cp37-cp37m-macosx_10_15_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file nncase-2.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nncase-2.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 19.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c0d6c4d021ffaea52769f940077e933ae852a8ffd9c8f9631b6cced15f0a0ea0
MD5 1134411573d7e9bff363a50a8a3b3579
BLAKE2b-256 3c4a2a90ca34c53bcaa16e9d03ea7ecd319b1cbba7eccb9a789b1b8d14863094

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1f1e61b6225ad955fcf9dbe093926da0d23199f4e35f4a788bb3627cf365266
MD5 bafc16244484464d9d1ca5df9c63e6a0
BLAKE2b-256 e366334a97c38f8c63f3fdf0402656187234d343640c32303d10a0d9b7636140

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.9.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.9.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2feb6947104b397fea17707aa269608f375d96aad3eaebbb55de56a12116fa1c
MD5 dd509cf3f2c4691c04aaee4ee742ba2b
BLAKE2b-256 c6cd2606c06e20d0cf97aae82ff3299177466b88e57523c48dcf5e7102850068

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nncase-2.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 19.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 facef59e7bb3306b7b5f650a0a694daa12a578b1c4c7748c5d5a4b80eead7882
MD5 044e6af22803c4ea81201628855819ea
BLAKE2b-256 7c5f4a11478693d57e723b7696b3527eba83014e28bcdaf53458c70cc17302eb

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb331a02976817e4f24815806f6cdc51ca4d36e643b597cfbdade8b6d00b2011
MD5 ed9a36416e9f15e4371faaeba9831748
BLAKE2b-256 a636abffc2f98299289571a38bf3d63ecfd2c70cee3c3ef2fae1abf07f9ee1aa

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.9.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.9.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 62fe97efd2a72df1bc3d9ceeff99bfee4329e9b81281cb25caf2071a2da80d2a
MD5 107ec2d35b802a8dad97e1353c7e412e
BLAKE2b-256 0781f9eb745386b4afb8261ff089dd4ce64c4a2540400185a7ba333f66ab6c27

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nncase-2.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 19.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2ecf054899dfc92886fce7479f2ddb8d6d054866ff350c5c9e2a4eefea172a24
MD5 4ac9c6ee77e124a64beadf34f8a35473
BLAKE2b-256 877641af236bc7127000df9acfd96b7ad6b5ba1f22f68ca3b58244f46696533a

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c51c2456a99156e106b788d9300eebf811c47d24cf7e446767cd15eaee49980
MD5 39f434294f2c7d127478dce65186932a
BLAKE2b-256 0b32ef9396275379694d066066cc6e5584a127e1ca37756ec568abc624862cf3

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.9.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.9.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3b507925208f531737e04b2582b1be424ebe810fcd3b0bf4f352c622d348c152
MD5 c9c2b136610ff44bb697b90705a3ded9
BLAKE2b-256 89a5e26d8dfc8d9a55c7d55f85e7fc3eae4970bd8060029e6daaa966c4030ef9

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nncase-2.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 19.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6ee2778efffe6c65da784dd7e0afb6a583780d168a0145b3b72fa463d91c3549
MD5 f679f5c22a67880221a2fe9fcf9dcdd4
BLAKE2b-256 c74606c191a4c24a5e238d0e7cd75e4ee40cad0fa05de955acebc90e8199555d

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2fa7b3317e429dca4ceb74bc448216befb137a98123d1442d29e37c11d0c87d2
MD5 a5ed9244602e7d2b90b21ab1306e7d81
BLAKE2b-256 c59ce193ba4a57449d96eb7673873f6f6e72faa067591035c6d26d413735a69f

See more details on using hashes here.

Provenance

File details

Details for the file nncase-2.9.0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.9.0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2e84ca0a6fed72aa9f7747dfc82ecf84eaafc7d53ba0ca89bf7194e36de6fd5c
MD5 6bb1737b6b855f7339d09bf58cab1de6
BLAKE2b-256 174f50ab8618897ba306752daa7faf2a0698c7726eab91e1c5c5cc79a7890862

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page