Skip to main content

Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).

Project description

onnx2tf

Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC).

You should use LiteRT Torch rather than onnx2tf. https://github.com/google-ai-edge/litert-torch

Downloads GitHub Python PyPI CodeQL Model Convert Test Status DOI Ask DeepWiki

Note

Click to Click to expand
  • The torch.script-based torch.onnx.export has already been moved to maintenance mode, and we recommend moving to the FX graph-based torch.onnx.dynamo_export starting with PyTorch v2.2.0.

  • The greatest advantage of ONNX generated by torch.onnx.dynamo_export would be that it directly references the PyTorch implementation, allowing for the conversion of any OP that was previously difficult to convert to ONNX.

  • The maintainers of ONNX and PyTorch have assured us that they will not add new OPs after opset=18 to the existing torch.onnx.export.

  • https://pytorch.org/docs/stable/onnx_dynamo.html#torch.onnx.dynamo_export

  • This can be converted directly into an ONNX graph using Pythonic code using onnxscript.

    image

  • For future model versatility, it would be a good idea to consider moving to torch.onnx.dynamo_export at an early stage.

  • Google AI Edge Torch AI Edge Torch is a python library that supports converting PyTorch models into a .tflite format, which can then be run with TensorFlow Lite and MediaPipe. This enables applications for Android, iOS and IOT that can run models completely on-device. AI Edge Torch offers broad CPU coverage, with initial GPU and NPU support. AI Edge Torch seeks to closely integrate with PyTorch, building on top of torch.export() and providing good coverage of Core ATen operators.

    https://github.com/google-ai-edge/ai-edge-torch?tab=readme-ov-file#pytorch-converter

    import torch
    import torchvision
    import ai_edge_torch
    
    # Use resnet18 with pre-trained weights.
    resnet18 = torchvision.models.resnet18(torchvision.models.ResNet18_Weights.IMAGENET1K_V1)
    sample_inputs = (torch.randn(1, 3, 224, 224),)
    
    # Convert and serialize PyTorch model to a tflite flatbuffer. Note that we
    # are setting the model to evaluation mode prior to conversion.
    edge_model = ai_edge_torch.convert(resnet18.eval(), sample_inputs)
    edge_model.export("resnet18.tflite")
    
  • Google for Developers Blog MAY 14, 2024 - AI Edge Torch: High Performance Inference of PyTorch Models on Mobile Devices

    https://developers.googleblog.com/en/ai-edge-torch-high-performance-inference-of-pytorch-models-on-mobile-devices/

  • Considering the compatibility of Pythonic code with TensorFlow/Keras/TFLite and the beauty of the conversion workflow, nobuco is the most optimal choice going forward.

  • The role of onnx2tf will end within the next one to two years. I don't intend to stop the maintenance of onnx2tf itself anytime soon, but I will continue to maintain it little by little as long as there is demand for it from everyone. The end of onnx2tf will be when TensorRT and other runtimes support porting from FX Graph based models.

Model Conversion Status

https://github.com/PINTO0309/onnx2tf/wiki/model_status

Supported layers

  • https://github.com/onnx/onnx/blob/main/docs/Operators.md

  • :heavy_check_mark:: Supported :white_check_mark:: Partial support Help wanted: Pull Request are welcome

    See the list of supported layers
    OP Status
    Abs :heavy_check_mark:
    Acosh :heavy_check_mark:
    Acos :heavy_check_mark:
    Add :heavy_check_mark:
    AffineGrid :heavy_check_mark:
    And :heavy_check_mark:
    ArgMax :heavy_check_mark:
    ArgMin :heavy_check_mark:
    Asinh :heavy_check_mark:
    Asin :heavy_check_mark:
    Atanh :heavy_check_mark:
    Atan :heavy_check_mark:
    Attention :heavy_check_mark:
    AveragePool :heavy_check_mark:
    BatchNormalization :heavy_check_mark:
    Bernoulli :heavy_check_mark:
    BitShift :heavy_check_mark:
    BitwiseAnd :heavy_check_mark:
    BitwiseNot :heavy_check_mark:
    BitwiseOr :heavy_check_mark:
    BitwiseXor :heavy_check_mark:
    BlackmanWindow :heavy_check_mark:
    Cast :heavy_check_mark:
    Ceil :heavy_check_mark:
    Celu :heavy_check_mark:
    CenterCropPad :heavy_check_mark:
    Clip :heavy_check_mark:
    Col2Im :white_check_mark:
    Compress :heavy_check_mark:
    ConcatFromSequence :heavy_check_mark:
    Concat :heavy_check_mark:
    ConstantOfShape :heavy_check_mark:
    Constant :heavy_check_mark:
    Conv :heavy_check_mark:
    ConvInteger :white_check_mark:
    ConvTranspose :heavy_check_mark:
    Cosh :heavy_check_mark:
    Cos :heavy_check_mark:
    CumProd :heavy_check_mark:
    CumSum :heavy_check_mark:
    DeformConv :white_check_mark:
    DepthToSpace :heavy_check_mark:
    Det :heavy_check_mark:
    DequantizeLinear :heavy_check_mark:
    DFT :white_check_mark:
    Div :heavy_check_mark:
    Dropout :heavy_check_mark:
    DynamicQuantizeLinear :heavy_check_mark:
    Einsum :heavy_check_mark:
    Elu :heavy_check_mark:
    Equal :heavy_check_mark:
    Erf :heavy_check_mark:
    Expand :heavy_check_mark:
    Exp :heavy_check_mark:
    EyeLike :heavy_check_mark:
    Flatten :heavy_check_mark:
    Floor :heavy_check_mark:
    FusedConv :heavy_check_mark:
    GatherElements :heavy_check_mark:
    GatherND :heavy_check_mark:
    Gather :heavy_check_mark:
    Gelu :heavy_check_mark:
    Gemm :heavy_check_mark:
    GlobalAveragePool :heavy_check_mark:
    GlobalLpPool :heavy_check_mark:
    GlobalMaxPool :heavy_check_mark:
    GreaterOrEqual :heavy_check_mark:
    Greater :heavy_check_mark:
    GridSample :white_check_mark:
    GroupNormalization :heavy_check_mark:
    GRU :heavy_check_mark:
    HammingWindow :white_check_mark:
    HannWindow :white_check_mark:
    Hardmax :heavy_check_mark:
    HardSigmoid :heavy_check_mark:
    HardSwish :heavy_check_mark:
    Identity :heavy_check_mark:
    If :heavy_check_mark:
    ImageDecoder :white_check_mark:
    Input :heavy_check_mark:
    InstanceNormalization :heavy_check_mark:
    Inverse :heavy_check_mark:
    IsInf :heavy_check_mark:
    IsNaN :heavy_check_mark:
    LayerNormalization :heavy_check_mark:
    LeakyRelu :heavy_check_mark:
    LessOrEqual :heavy_check_mark:
    Less :heavy_check_mark:
    Log :heavy_check_mark:
    LogSoftmax :heavy_check_mark:
    Loop :heavy_check_mark:
    LpNormalization :heavy_check_mark:
    LpPool :heavy_check_mark:
    LRN :heavy_check_mark:
    LSTM :heavy_check_mark:
    MatMul :heavy_check_mark:
    MatMulInteger :heavy_check_mark:
    MaxPool :heavy_check_mark:
    Max :heavy_check_mark:
    MaxRoiPool :heavy_check_mark:
    MaxUnpool :heavy_check_mark:
    Mean :heavy_check_mark:
    MeanVarianceNormalization :heavy_check_mark:
    MelWeightMatrix :heavy_check_mark:
    Min :heavy_check_mark:
    Mish :heavy_check_mark:
    Mod :heavy_check_mark:
    Mul :heavy_check_mark:
    Multinomial :heavy_check_mark:
    Neg :heavy_check_mark:
    NegativeLogLikelihoodLoss :heavy_check_mark:
    NonMaxSuppression :heavy_check_mark:
    NonZero :heavy_check_mark:
    Optional :heavy_check_mark:
    OptionalGetElement :heavy_check_mark:
    OptionalHasElement :heavy_check_mark:
    Not :heavy_check_mark:
    OneHot :heavy_check_mark:
    Or :heavy_check_mark:
    Pad :heavy_check_mark:
    Pow :heavy_check_mark:
    PRelu :heavy_check_mark:
    QLinearAdd :heavy_check_mark:
    QLinearAveragePool :heavy_check_mark:
    QLinearConcat :heavy_check_mark:
    QLinearConv :heavy_check_mark:
    QGemm :heavy_check_mark:
    QLinearGlobalAveragePool :heavy_check_mark:
    QLinearLeakyRelu :heavy_check_mark:
    QLinearMatMul :heavy_check_mark:
    QLinearMul :heavy_check_mark:
    QLinearSigmoid :heavy_check_mark:
    QLinearSoftmax :heavy_check_mark:
    QuantizeLinear :heavy_check_mark:
    RandomNormalLike :heavy_check_mark:
    RandomNormal :heavy_check_mark:
    RandomUniformLike :heavy_check_mark:
    RandomUniform :heavy_check_mark:
    Range :heavy_check_mark:
    Reciprocal :heavy_check_mark:
    ReduceL1 :heavy_check_mark:
    ReduceL2 :heavy_check_mark:
    ReduceLogSum :heavy_check_mark:
    ReduceLogSumExp :heavy_check_mark:
    ReduceMax :heavy_check_mark:
    ReduceMean :heavy_check_mark:
    ReduceMin :heavy_check_mark:
    ReduceProd :heavy_check_mark:
    ReduceSum :heavy_check_mark:
    ReduceSumSquare :heavy_check_mark:
    RegexFullMatch :heavy_check_mark:
    Relu :heavy_check_mark:
    Reshape :heavy_check_mark:
    Resize :heavy_check_mark:
    ReverseSequence :heavy_check_mark:
    RNN :heavy_check_mark:
    RoiAlign :heavy_check_mark:
    RotaryEmbedding :heavy_check_mark:
    Round :heavy_check_mark:
    ScaleAndTranslate :heavy_check_mark:
    Scatter :heavy_check_mark:
    ScatterElements :heavy_check_mark:
    ScatterND :heavy_check_mark:
    Scan :heavy_check_mark:
    Selu :heavy_check_mark:
    SequenceAt :heavy_check_mark:
    SequenceConstruct :heavy_check_mark:
    SequenceEmpty :heavy_check_mark:
    SequenceErase :heavy_check_mark:
    SequenceInsert :heavy_check_mark:
    SequenceLength :heavy_check_mark:
    Shape :heavy_check_mark:
    Shrink :heavy_check_mark:
    Sigmoid :heavy_check_mark:
    Sign :heavy_check_mark:
    Sinh :heavy_check_mark:
    Sin :heavy_check_mark:
    Size :heavy_check_mark:
    Slice :heavy_check_mark:
    Softmax :heavy_check_mark:
    SoftmaxCrossEntropyLoss :heavy_check_mark:
    Softplus :heavy_check_mark:
    Softsign :heavy_check_mark:
    SpaceToDepth :heavy_check_mark:
    Split :heavy_check_mark:
    SplitToSequence :heavy_check_mark:
    Sqrt :heavy_check_mark:
    Squeeze :heavy_check_mark:
    STFT :white_check_mark:
    StringConcat :heavy_check_mark:
    StringNormalizer :heavy_check_mark:
    StringSplit :heavy_check_mark:
    Sub :heavy_check_mark:
    Sum :heavy_check_mark:
    Tan :heavy_check_mark:
    Tanh :heavy_check_mark:
    TensorScatter :heavy_check_mark:
    TfIdfVectorizer :white_check_mark:
    ThresholdedRelu :heavy_check_mark:
    Tile :heavy_check_mark:
    TopK :heavy_check_mark:
    Transpose :heavy_check_mark:
    Trilu :heavy_check_mark:
    Unique :heavy_check_mark:
    Unsqueeze :heavy_check_mark:
    Upsample :heavy_check_mark:
    Where :heavy_check_mark:
    Xor :heavy_check_mark:

[!WARNING] flatbuffer_direct is an experimental backend. Behavior, supported patterns, and conversion quality may change between releases. For production use, keep tf_converter as baseline and validate flatbuffer_direct per model with --report_op_coverage.

flatbuffer_direct now runs a layout-transpose chain optimizer during lowering. For NCW/NCHW/NCDHW <-> NWC/NHWC/NDHWC conversion paths, inverse Transpose pairs are removed automatically when safe. Transpose -> (Quantize/Dequantize) -> inverse Transpose and Transpose -> Quantize -> Dequantize -> inverse Transpose are also folded for per-tensor quantization. Transpose -> (ADD/SUB/MUL/DIV) -> inverse Transpose is folded when both binary inputs share the same pre-transpose permutation. For float outputs, terminal QUANTIZE -> DEQUANTIZE pairs are also removed when the pair is isolated and output-only.

[WIP・experimental] flatbuffer_direct support status for ONNX ops in this list

The flatbuffer_direct conversion option exists to convert a QAT quantized ONNX model to an optimized quantized tflite (LiteRT) model. By the way, if you want to generate a highly optimized quantized tflite for your ONNX model, I recommend using this package. https://github.com/NXP/eiq-onnx2tflite

INT8 ONNX INT8 TFLite(LiteRT)
Image image
Click to expand
  • Scope: ONNX ops listed in the Supported layers table above.
  • Source of truth: onnx2tf/tflite_builder/op_registry.py and --report_op_coverage output.
  • Current summary:
    • Listed ONNX ops in this README section: 208
    • Policy counts are generated in *_op_coverage_report.json (schema_policy_counts).
    • Check each conversion run with --report_op_coverage for the latest numbers.

Notes:

  • flatbuffer_direct supports only a subset of ONNX ops as TFLite builtins.
  • Some ops are conditionally supported (rank/attribute/constant-input constraints).
  • For model-specific results, use --report_op_coverage and check *_op_coverage_report.json.
Builtin supported (ONNX -> TFLite) in flatbuffer_direct
ONNX OP TFLite OP Key constraints (flatbuffer_direct)
Abs ABS -
Acos MUL + SUB + SQRT + ATAN2 Input/output dtype must be FLOAT16 or FLOAT32
Acosh SUB + ADD + SQRT + MUL + LOG Input/output dtype must be FLOAT16 or FLOAT32
Add ADD -
And LOGICAL_AND -
ArgMax ARG_MAX (+ optional RESHAPE for keepdims) axis must be in range, keepdims must be 0 or 1, select_last_index=0, output dtype must be INT32 or INT64
ArgMin ARG_MIN (+ optional RESHAPE for keepdims) axis must be in range, keepdims must be 0 or 1, select_last_index=0, output dtype must be INT32 or INT64
Asin MUL + SUB + SQRT + ATAN2 Input/output dtype must be FLOAT16 or FLOAT32
Asinh MUL + ADD + SQRT + LOG Input/output dtype must be FLOAT16 or FLOAT32
Atan ATAN2 Input/output dtype must be FLOAT16 or FLOAT32
Atanh ADD + SUB + DIV + LOG + MUL Input/output dtype must be FLOAT16 or FLOAT32
AveragePool AVERAGE_POOL_2D 2D only (rank=4), ceil_mode=0, zero pads or auto_pad=SAME_*
BatchNormalization MUL + ADD All parameter inputs (scale, bias, mean, var) must be constant
BitShift RIGHT_SHIFT (RIGHT) or MUL-based (LEFT) LHS/RHS must be integer tensors, direction must be LEFT or RIGHT; LEFT requires constant shift input
BitwiseAnd LOGICAL_AND BOOL tensors only
BitwiseNot LOGICAL_NOT / SUB + CAST Input dtype must be BOOL or integer
BitwiseOr LOGICAL_OR BOOL tensors only
BitwiseXor BITWISE_XOR Input dtypes must match and be BOOL/integer
Cast CAST -
Ceil CEIL -
Celu MAXIMUM + MINIMUM + DIV + EXP + SUB + MUL + ADD Input/output dtype must be FLOAT16 or FLOAT32
Clip RELU / RELU6 / MAXIMUM + MINIMUM General constant clip ranges are supported via MAXIMUM/MINIMUM decomposition. ReLU fast-path: min=0,max=+inf; ReLU6 fast-path: min=0,max=6
Concat CONCATENATION -
ConstantOfShape CAST + FILL Shape input must be rank-1 integer tensor; value attribute must be scalar (or omitted for zero-fill)
Conv CONV_2D / DEPTHWISE_CONV_2D 2D only (rank=4), weights must be constant, grouped conv only regular/depthwise, zero pads or auto_pad=SAME_*
ConvTranspose TRANSPOSE_CONV (+ optional ADD bias) 2D only (input rank=4), weight must be constant rank=4, group=1, dilations=[1,1], output_padding=[0,0], and padding must be auto_pad=SAME_* or zero pads (auto_pad in {NOTSET,VALID})
Cos COS -
Cosh SUB + EXP + ADD + MUL Input/output dtype must be FLOAT16 or FLOAT32
DequantizeLinear DEQUANTIZE scale must be constant, zero_point (if provided) must be constant, per-axis axis must be in range
Div DIV or MUL (when divisor is constant reciprocal) For non-floating outputs, lowered as CAST -> MUL(reciprocal) -> CAST to preserve output dtype without using unsupported integer DIV paths
DynamicQuantizeLinear NEG + REDUCE_MAX + MINIMUM + MAXIMUM + SUB + DIV + ADD + CAST Input dtype must be FLOAT16/FLOAT32, output dtypes must be Y=UINT8, Y_Scale=FLOAT16/FLOAT32, Y_ZeroPoint=UINT8; scale/zero-point outputs must be scalar
Einsum FULLY_CONNECTED Rank-2 matmul-style equation only (ij,jk->ik), rhs input must be constant weights
Elu ELU -
Equal EQUAL -
Exp EXP -
Expand RESHAPE + MUL (broadcast via const ones) Output shape must be statically known, non-negative, and broadcast-compatible with input shape (current direct lowering uses static RESHAPE + MUL)
EyeLike RESHAPE (from const eye) Output must be rank-2 with fully static positive shape
Flatten RESHAPE Input rank must be >= 1
Floor FLOOR -
FusedMatMul BATCH_MATMUL (+ optional MUL for alpha) Input rank >= 2, dtypes FLOAT16/FLOAT32 only, transA/transB must be 0 or 1, finite alpha required
Gather GATHER batch_dims=0 only
GatherElements CAST + RESHAPE + CONCATENATION + GATHER_ND Data/indices ranks must match, output shape must equal indices shape, static positive output dims required, axis must be in range
GatherND CAST + GATHER_ND batch_dims=0 only; indices must be integer type; indices last dim must be static positive and <= params_rank
Gelu GELU -
Gemm FULLY_CONNECTED Input rank=2, weight rank=2 + constant, transA=0 only
Greater GREATER -
GRU TRANSPOSE + SLICE + SQUEEZE + BATCH_MATMUL + ADD + MUL + SUB + LOGISTIC + TANH + RESHAPE + CONCATENATION + EXPAND_DIMS layout=0; direction in {forward, reverse, bidirectional}; sequence_lens unsupported; W/R must be constant rank-3; linear_before_reset in {0,1}; activations [Sigmoid,Tanh]; clip=0
Hardmax TRANSPOSE + ARG_MAX + ONE_HOT axis must be in range; target axis size must be static positive
HardSigmoid MUL + ADD + MAXIMUM + MINIMUM Input/output dtype must be FLOAT16 or FLOAT32
Identity RESHAPE -
Less LESS -
LessOrEqual LESS_EQUAL -
LogSoftmax SOFTMAX + LOG (+ transpose in/out for non-last axis) axis must be in range (negative axis normalized)
LpNormalization L2_NORMALIZATION p=2, axis=last only
LRN LOCAL_RESPONSE_NORMALIZATION (+ transpose in/out) Input rank must be 4, size must be a positive odd integer
LSTM BIDIRECTIONAL_SEQUENCE_LSTM + SPLIT + RESHAPE/EXPAND_DIMS + CONCATENATION direction=bidirectional, layout=0, input_forget=0; W/R must be constant rank-3 with num_directions=2; optional B must be constant shape [2, 8*hidden_size]; initial_h/initial_c must be constant zero tensors of shape [2, batch, hidden]; sequence_lens and peephole input P unsupported; outputs Y_h/Y_c unsupported when consumed
MatMul BATCH_MATMUL Input rank >= 2. Dynamic rhs input is supported (no constant-weight requirement)
MatMulInteger CAST + SUB + BATCH_MATMUL A/B input rank must be >=2 (rank=1 placeholder allowed), A/B dtypes must be integer tensor types (INT8/UINT8/INT16/UINT16/INT32), output dtype must be INT32/INT64; optional zero-point inputs must be scalar/1D and shape-compatible
MaxPool MAX_POOL_2D 2D only (rank=4), ceil_mode=0, zero pads or auto_pad=SAME_*
Mish EXP + ADD + LOG + TANH + MUL Input/output dtype must be FLOAT16 or FLOAT32
Mod FLOOR_MOD fmod=0 only
Mul MUL -
Neg NEG -
NonMaxSuppression ARG_MAX + REDUCE_MAX + SQUEEZE + NON_MAX_SUPPRESSION_V4 + SLICE + GATHER + SUB + CAST + RESHAPE + CONCATENATION Rank-3 boxes/scores only; center_point_box=0; currently batch=1; class dim >1 requires --output_nms_with_argmax; optional thresholds/max_output must be scalar constants
NonZero NOT_EQUAL + WHERE + TRANSPOSE + CAST Input rank must be >=1; output rank must be 2
Not LOGICAL_NOT -
OneHot CAST + ADD + FLOOR_MOD + ONE_HOT depth input must be constant scalar and >0; values input must be constant 2-element tensor [off_value,on_value]; normalized axis must be in range
Or LOGICAL_OR -
Pad PAD mode=constant only, pads must be constant, constant pad value (if provided) must be zero
Pow POW Output dtype must be FLOAT16 or FLOAT32
PRelu PRELU slope must be constant (scalar or per-channel)
QGemm FULLY_CONNECTED Input rank=1 or 2, weight must be constant rank=2, bias must be constant, quantization params must be constant, transA=0, transB in {0,1}
QLinearAdd ADD All quantization params (a/b/c scale, a/b/c zero_point) must be constant
QLinearAveragePool DEQUANTIZE + TRANSPOSE + AVERAGE_POOL_2D + TRANSPOSE + QUANTIZE Input rank=4 only, all quantization params (x scale/zero_point, y scale/zero_point) must be constant, kernel_shape/strides must be 2D, dilations=[1,1], ceil_mode=0, count_include_pad=0, and pads must satisfy flatbuffer_direct pool constraints (zero/symmetric or auto_pad=SAME_*)
QLinearConcat DEQUANTIZE + CONCATENATION + QUANTIZE y scale/zero_point and each input triplet (x scale/zero_point) must be constant, input ranks must match, axis must be in range
QLinearConv CONV_2D / DEPTHWISE_CONV_2D Input/output rank=4, weight must be constant rank=4, all quantization params constant, group conv only regular/depthwise (depthwise detection uses group and weight shape), optional bias must be constant
QLinearGlobalAveragePool AVERAGE_POOL_2D (preferred) / DEQUANTIZE + MEAN + QUANTIZE (fallback) All quantization params (x scale/zero_point, y scale/zero_point) must be constant, input rank >= 3, channels_last must be 0 or 1. Quantized AVERAGE_POOL_2D path is used for rank-4 with static spatial dims and per-tensor quantization
QLinearMatMul FULLY_CONNECTED Input rank=1 or 2, weight must be constant rank=2, all quantization params constant
QLinearMul MUL All quantization params (a/b/c scale, a/b/c zero_point) must be constant
QLinearSigmoid DEQUANTIZE + LOGISTIC + QUANTIZE All quantization params (x scale/zero_point, y scale/zero_point) must be constant
QuantizeLinear QUANTIZE scale must be constant, zero_point (if provided) must be constant, per-axis axis must be in range
Range CAST + SQUEEZE + RANGE Each of start/limit/delta must be scalar-like rank-1 length-1 tensor
Reciprocal DIV Input/output dtype must be FLOAT16 or FLOAT32
ReduceL1 ABS + SUM Reduce axes must be constant when provided via input tensor
ReduceL2 MUL + SUM + SQRT + CAST Reduce axes must be constant when provided via input tensor
ReduceMax REDUCE_MAX Reduce axes must be constant when provided via input tensor
ReduceMean MEAN Reduce axes must be constant when provided via input tensor
ReduceSum SUM Reduce axes must be constant when provided via input tensor
Relu RELU -
Reshape RESHAPE Shape input must be constant
Resize RESIZE_NEAREST_NEIGHBOR / RESIZE_BILINEAR Rank-4 only; supported modes: nearest/linear (limited attr combinations). Parameters must be either constant scales/sizes or dynamic rank-1 integer sizes (INT32/INT64)
RNN UNIDIRECTIONAL_SEQUENCE_RNN + TRANSPOSE + EXPAND_DIMS + SLICE + RESHAPE direction=forward, layout=0; sequence_lens unsupported; W/R must be constant rank-3 with num_directions=1; activations in {tanh,relu,sigmoid}; clip=0
Round ROUND -
Selu MAXIMUM + MINIMUM + EXP + SUB + MUL + ADD Input/output dtype must be FLOAT16 or FLOAT32
Shape SHAPE (+ SLICE for start/end) Output dtype must be INT32 or INT64; start/end slicing follows ONNX normalization
Sigmoid LOGISTIC -
Sign SIGN -
Sin SIN -
Sinh SUB + EXP + MUL Input/output dtype must be FLOAT16 or FLOAT32
Softmax SOFTMAX (+ transpose in/out for non-last axis) axis must be in range (negative axis normalized)
Softplus EXP + ADD + LOG Input/output dtype must be FLOAT16 or FLOAT32
Softsign ABS + ADD + DIV Input/output dtype must be FLOAT16 or FLOAT32
SpaceToDepth SPACE_TO_DEPTH blocksize > 1, rank=4 (NCHW)
Sqrt SQRT -
Squeeze SQUEEZE Axes must be constant when provided via input tensor
Sub SUB -
Tan SIN + COS + DIV Input/output dtype must be FLOAT16 or FLOAT32
Tanh TANH -
Transpose TRANSPOSE Permutation input must be constant
Trilu MUL / LOGICAL_AND Input rank must be >=2; matrix dims must be static positive; optional k input must be constant
Unsqueeze RESHAPE Axes must be constant and in range
Where CAST + SELECT Condition input dtype must be BOOL or numeric
Xor NOT_EQUAL -
Custom-op candidates in flatbuffer_direct (opt-in)
ONNX OP Default policy When enabled
DeformConv explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes
GridSample explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes
If explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes
Loop explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes
RoiAlign explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes
Scan explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes
ScatterElements explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes
SequenceAt explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes
SequenceConstruct explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes
SequenceErase explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes
SequenceInsert explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes
SequenceLength explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes
TopK explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes
Unique explicit_error (custom_op_candidate_disabled) Lowered to TFLite CUSTOM when --flatbuffer_direct_allow_custom_ops is enabled and allowlist passes

Notes:

  • Einsum is now treated as builtin_supported when it matches builtin constraints; unsupported Einsum patterns may still fallback to CUSTOM if custom-op mode is enabled.
  • QLinearConv is treated as builtin_supported for regular/depthwise patterns; unsupported grouped patterns may still fallback to CUSTOM when custom-op mode is enabled.
  • LogSoftmax is now treated as builtin_supported when builtin constraints pass; unsupported patterns may still fallback to CUSTOM if custom-op mode is enabled.
  • LSTM is now treated as builtin_supported for constrained bidirectional patterns; unsupported patterns may still fallback to CUSTOM if custom-op mode is enabled.
  • NonMaxSuppression is now treated as builtin_supported when builtin constraints pass; unsupported patterns may still fallback to CUSTOM if custom-op mode is enabled.
  • DynamicQuantizeLinear is now treated as builtin_supported for constrained float-input/uint8-output patterns; unsupported patterns may still fallback to CUSTOM if custom-op mode is enabled.
  • OneHot, MatMulInteger, Pow, and Reciprocal are now treated as builtin_supported when builtin constraints pass.
  • Newly added builtin-covered ops in this update include: Abs, Acos, Acosh, And, ArgMin, Asin, Asinh, Atan, Atanh, BitShift, BitwiseAnd, BitwiseNot, BitwiseOr, BitwiseXor, Ceil, Celu, Cos, Cosh, Elu, Equal, EyeLike, Floor, GatherND, Gelu, Greater, GRU, Hardmax, Less, LessOrEqual, Mish, NonZero, Not, Or, Range, ReduceL1, ReduceL2, RNN, Round, Selu, Sign, Sin, Sinh, Softplus, Softsign, Tan, Trilu, Where, and Xor.
  • Resize builtin path now accepts dynamic rank-1 integer sizes input in addition to constant scales/sizes.

tf_converter vs flatbuffer_direct (operational differences)

Item tf_converter (default) flatbuffer_direct
Final backend TensorFlow Lite Converter Direct FlatBuffer builder (schema.fbs)
Model optimization source Large set of existing TF-path graph rewrites/heuristics Dedicated direct preprocess pipeline + direct dispatch constraints
Failure behavior Often absorbed by TF-side graph lowering Explicit reason_code-based failure on unsupported patterns
Custom op handling Typically avoided by TF-side replacement when possible Opt-in only (--flatbuffer_direct_allow_custom_ops) with allowlist
Diagnostics Standard conversion logs *_op_coverage_report.json (dispatch_mode, unsupported_reason_counts, custom_op_policy, preprocess_report)
Fallback N/A --flatbuffer_direct_fallback_to_tf_converter available

flatbuffer_direct preprocess absorption scope

flatbuffer_direct runs staged preprocess rules before lowering. Current major coverage:

  1. pattern_fusion_wave2
    • Relu -> Clip(min=0,max=6) chain normalization
    • GELU chain fusion (Div -> Erf -> Add -> Mul -> Mul)
    • Reshape -> Transpose -> Reshape to SpaceToDepth
  2. quant_chain_fusion_wave3
    • DequantizeLinear -> BatchNormalization -> PRelu -> QuantizeLinear chain rewrite
    • BatchNormalization parameter folding into Mul + Add
  3. pseudo_ops_wave1
    • HardSwish, LeakyRelu, Gelu, limited Pow rewrites to builtin-friendly forms
  4. constant_fold_a5
    • Limited constant folding for shape/axes and arithmetic helper chains
    • Includes DequantizeLinear (axis/block-size aware) and downstream Reshape folding for constant-weight subgraphs
  5. normalize_attrs_a5
    • Normalize perm/axes/negative-axis forms and softmax-axis bridge rewrites

Notes:

  1. This reduces, but does not fully match, the TF-path replacement coverage.
  2. To inspect what was applied, use --report_op_coverage and check preprocess_report.applied_rules.

Known constraints and workaround options

Symptom (reason_code) Meaning Recommended action
unsupported_onnx_op No direct builtin/custom path for the node Use --tflite_backend tf_converter, or enable --flatbuffer_direct_fallback_to_tf_converter
requires_constant_input Node requires compile-time constant input (e.g., axes/perm/shape) Pre-fold ONNX graph (onnxsim) or rewrite model to constantize the input
unsupported_attribute_value Attribute/rank/value not accepted by direct builtin constraints Adjust ONNX export options or rewrite offending subgraph before conversion
custom_op_candidate_disabled Op is in custom-candidate set but custom lowering is disabled Enable --flatbuffer_direct_allow_custom_ops when runtime supports the custom op
custom_op_not_in_allowlist Custom lowering enabled but op is not allowlisted Add op to --flatbuffer_direct_custom_op_allowlist explicitly

Demo

Video speed is adjusted approximately 50 times slower than actual speed. render1665941718294

Environment

  • Linux / Windows
  • onnx==1.20.1
  • onnxruntime==1.24.1
  • onnxsim-prebuilt==0.4.39.post2
  • onnxoptimizer==0.4.2
  • sne4onnx>=2.0.0
  • sng4onnx>=2.0.0
  • tensorflow==2.19.0
  • tf-keras==2.19.0
  • ai-edge-litert==2.1.2
  • h5py==3.12.1
  • psutil==5.9.5
  • ml_dtypes==0.5.1
  • flatbuffers-compiler (Optional, Only when using the -coion option. Executable file named flatc.)
  • flatbuffers>=23.1.21
    # Custom flatc binary for Ubuntu 22.04+
    # https://github.com/PINTO0309/onnx2tf/issues/196
    
    # x86_64/amd64 v23.5.26
    wget https://github.com/PINTO0309/onnx2tf/releases/download/1.16.31/flatc.tar.gz \
    && tar -zxvf flatc.tar.gz \
    && sudo chmod +x flatc \
    && sudo mv flatc /usr/bin/
    
    # arm64 v23.1.21
    wget https://github.com/PINTO0309/onnx2tf/releases/download/1.26.6/flatc_arm64.tar.gz \
    && tar -zxvf flatc_arm64.tar.gz \
    && sudo chmod +x flatc \
    && sudo mv flatc /usr/bin/
    

Sample Usage

1. Install

Note:

1. If you are using TensorFlow v2.13.0 or earlier, use a version older than onnx2tf v1.17.5. onnx2tf v1.17.6 or later will not work properly due to changes in TensorFlow's API.

2. The latest onnx2tf implementation is based on Keras API 3 and will not work properly if you install TensorFlow v2.15.0 or earlier.

3. Starting with onnx2tf v2.0.0, due to onnxruntime issues, onnx2tf will no longer support environments older than Python 3.10. Accordingly, the Docker Image has been upgraded to Ubuntu 24.04. The dependency on onnx-graphsurgeon has also been completely removed. onnxruntime v1.24.1: https://github.com/microsoft/onnxruntime/releases/tag/v1.24.1

  • HostPC

    Click to expand
    # PAT authentication is required to pull from GHCR.
    docker login ghcr.io
    
    Username (xxxx): {Enter}
    Password: {Personal Access Token}
    Login Succeeded
    
    # Start an interactive session on the terminal.
    docker run --rm -it \
    -v `pwd`:/workdir \
    -w /workdir \
    ghcr.io/pinto0309/onnx2tf:2.0.19
    
    or
    
    # Authentication is not required for pulls from Docker Hub.
    # Start an interactive session on the terminal.
    docker run --rm -it \
    -v `pwd`:/workdir \
    -w /workdir \
    docker.io/pinto0309/onnx2tf:2.0.19
    
    or
    
    # Direct execution in Docker
    # The model conversion is performed within Docker,
    # but the model is output to the host PC's storage.
    docker run --rm \
    --user $(id -u):$(id -g) \
    -v $(pwd):/work \
    docker.io/pinto0309/onnx2tf:2.0.19 \
    onnx2tf -i /work/densenet-12.onnx -o /work/saved_model
    
    or
    
    curl -LsSf https://astral.sh/uv/install.sh | sh
    uv python install 3.12.12
    uv venv -p 3.12.12 .venv
    source .venv/bin/activate
    uv pip install -U onnx2tf
    
    or
    
    curl -LsSf https://astral.sh/uv/install.sh | sh
    uv python install 3.12.12
    uv venv -p 3.12.12 .venv
    source .venv/bin/activate
    uv sync
    
    or
    
    pip install -e .
    
    or
    
    docker buildx build \
    --platform linux/amd64 \
    --build-arg BUILD_ARCH=linux/amd64 \
    --progress=plain \
    -t onnx2tf:amd64 \
    --load .
    
    or
    
    # It is possible to cross-compile an arm64 environment on an x64 environment.
    docker buildx build \
    --platform linux/arm64 \
    --build-arg BUILD_ARCH=linux/arm64 \
    --progress=plain \
    -t onnx2tf:arm64 \
    --load .
    

2. Run test

Only patterns that are considered to be used particularly frequently are described. In addition, there are several other options, such as disabling Flex OP and additional options to improve inference performance. See: CLI Parameter

# Float32, Float16
# This is the fastest way to generate tflite.
# Improved to automatically generate `signature` without `-osd` starting from v1.25.3.
# Also, starting from v1.24.0, efficient TFLite can be generated
# without unrolling `GroupConvolution`. e.g. YOLOv9, YOLOvN
# Conversion to other frameworks. e.g. TensorFlow.js, CoreML, etc
# https://github.com/PINTO0309/onnx2tf#19-conversion-to-tensorflowjs
# https://github.com/PINTO0309/onnx2tf#20-conversion-to-coreml
wget https://github.com/PINTO0309/onnx2tf/releases/download/0.0.2/resnet18-v1-7.onnx
onnx2tf -i resnet18-v1-7.onnx

ls -lh saved_model/

assets
fingerprint.pb
resnet18-v1-7_float16.tflite
resnet18-v1-7_float32.tflite
saved_model.pb
variables

TF_CPP_MIN_LOG_LEVEL=3 \
saved_model_cli show \
--dir saved_model \
--signature_def serving_default \
--tag_set serve

The given SavedModel SignatureDef contains the following input(s):
  inputs['data'] tensor_info:
      dtype: DT_FLOAT
      shape: (-1, 224, 224, 3)
      name: serving_default_data:0
The given SavedModel SignatureDef contains the following output(s):
  outputs['output_0'] tensor_info:
      dtype: DT_FLOAT
      shape: (-1, 1000)
      name: PartitionedCall:0
Method name is: tensorflow/serving/predict

# In the interest of efficiency for my development and debugging of onnx2tf,
# the default configuration shows a large amount of debug level logs.
# However, for most users, a large number of debug logs are unnecessary.
# If you want to reduce the amount of information displayed in the conversion log,
# you can change the amount of information in the log by specifying the
# `--verbosity` or `-v` option as follows.
# Possible values are "debug", "info", "warn", and "error".
wget https://github.com/PINTO0309/onnx2tf/releases/download/0.0.2/resnet18-v1-7.onnx
onnx2tf -i resnet18-v1-7.onnx -v info

# Override undefined batch size or other dimensions with static values.
# If the model has undefined dimensions, rewriting them to a static size will significantly
# improve the success rate of the conversion.
# The `-b` option overwrites the zero-dimensional batch size with the number specified
# without input OP name.
# Note that if there are multiple input OPs, the zero dimension of all input OPs is
# forced to be rewritten.
# The `-sh/--shape-hints` option provides shape hints for input tensors with undefined
# dimensions, significantly improving the conversion success rate for models with dynamic
# input shapes. Specifying this option in combination with the `-b` option will further
# improve the success rate of model conversion. The `-sh` option does not change ONNX
# input OPs to static shapes.
# The `-ois/--overwrite_input_shape` option allows undefined dimensions in all dimensions,
# including the zero dimensionality, to be overwritten to a static shape, but requires
# the input OP name to be specified.
# e.g. -ois data1:1,3,224,224 data2:1,255 data3:1,224,6
wget https://github.com/PINTO0309/onnx2tf/releases/download/0.0.2/resnet18-v1-7.onnx
onnx2tf -i resnet18-v1-7.onnx -b 1
or
onnx2tf -i resnet18-v1-7.onnx -sh data:1,3,224,224 -b 1
or
onnx2tf -i resnet18-v1-7.onnx -ois data:1,3,224,224

# Suppress automatic transposition of input OPs from NCW, NCHW, NCDHW to NWC, NHWC, NDHWC.
# onnx2tf is a specification that automatically transposes the input OP to [N,H,W,C] format
# before converting the model. However, since onnx2tf cannot determine from the structure of
# the model whether the input data is image, audio data, or something else, it unconditionally
# transposes the channels. Therefore, it is the models of STT/TTS models where the input is
# not NHWC that tend to have particular problems with the automatic transposition of the
# input OP.
# If you do not want input OPs to be automatically transposed, you can disable automatic
# transposition of input OPs by specifying the `-kat` option.
wget https://github.com/PINTO0309/onnx2tf/releases/download/1.1.28/double_gru.onnx
# INPUT OPs: "spec": float32[1,3,257,1], "states_in": float32[2,1,32]
# The following command suppresses the automatic transposition of "states_in" and converts it.
onnx2tf -i double_gru.onnx -kat states_in

# Keras h5 format
# .h5, .json, .keras, .weights.h5, .weights.keras, .data-00000-of-00001, .index
wget https://github.com/PINTO0309/onnx2tf/releases/download/0.0.2/resnet18-v1-7.onnx
onnx2tf -i resnet18-v1-7.onnx -oh5

# Keras keras_v3 format (TensorFlow v2.12.0 or later only)
wget https://github.com/PINTO0309/onnx2tf/releases/download/0.0.2/resnet18-v1-7.onnx
onnx2tf -i resnet18-v1-7.onnx -okv3

# TensorFlow v1 (.pb) format
wget https://github.com/PINTO0309/onnx2tf/releases/download/0.0.2/resnet18-v1-7.onnx
onnx2tf -i resnet18-v1-7.onnx -otfv1pb

# Automatic JSON generation only
# Generates an optimal parameter replacement JSON file for model conversion.
# The JSON file is saved to {model_name}_auto.json when conversion errors occur
# or accuracy issues are detected and the feature is explicitly enabled.
onnx2tf -i model.onnx -agj

# Accuracy validation only (no JSON generation)
# Validates the accuracy between ONNX and TensorFlow outputs without generating
# any parameter replacement JSON file.
onnx2tf -i model.onnx -cotof

# Accuracy validation + automatic JSON generation
# First generates an optimal parameter replacement JSON file, then uses it
# to validate the model accuracy. This ensures the best possible conversion accuracy.
onnx2tf -i model.onnx -agj -cotof

# Accuracy validation with opt-in JSON generation on error
# Generates a parameter replacement JSON only when accuracy errors greater than 1e-2
# are detected during validation.
onnx2tf -i model.onnx -cotof -agje

# INT8 Quantization, Full INT8 Quantization
# INT8 Quantization with INT16 activation, Full INT8 Quantization with INT16 activation
# Dynamic Range Quantization
wget https://github.com/PINTO0309/onnx2tf/releases/download/1.1.1/emotion-ferplus-8.onnx
# INT8 Quantization (per-channel)
onnx2tf -i emotion-ferplus-8.onnx -oiqt
# INT8 Quantization (per-tensor)
onnx2tf -i emotion-ferplus-8.onnx -oiqt -qt per-tensor

# Split the model at the middle position for debugging
# Specify the input name of the OP
wget https://github.com/PINTO0309/onnx2tf/releases/download/1.25.0/cf_fus.onnx
onnx2tf -i cf_fus.onnx -inimc 448

# Split the model at the middle position for debugging
# Specify the output name of the OP
wget https://github.com/PINTO0309/onnx2tf/releases/download/1.25.0/cf_fus.onnx
onnx2tf -i cf_fus.onnx -onimc dep_sec

# Split the model at the middle position for debugging
# Specify the input/output name of the OP
wget https://github.com/PINTO0309/onnx2tf/releases/download/1.25.0/cf_fus.onnx
onnx2tf -i cf_fus.onnx -inimc 448 -onimc velocity

# Suppress generation of Flex OP and replace with Pseudo-Function
# [
#     Asin, Acos, Atan, Abs, PReLU,
#     LeakyReLU, Power, GatherND,
#     Neg, HardSwish, Erf, GeLU, MatMulInteger,
# ]
# Below is a sample of replacing Erf with another set of operations.
wget https://s3.ap-northeast-2.wasabisys.com/temp-models/onnx2tf_readme/Erf_11.onnx
onnx2tf -i Erf_11.onnx -rtpo Erf

# High-dimensional Transpose decomposition
# If you do not like FlexTranspose being generated, try `-nodaftc`.
# Suppresses the generation of FlexTranspose by decomposing Transpose
# to the specified number of dimensions.
# In TensorFlow v2.12.0 and later, up to 6 dimensions are converted to normal Transpose;
# in v2.11.0 and earlier, up to 5 dimensions are converted to normal Transpose.
# Note that specifying `2` for the `-nodaftc` option causes all Transpose OPs to disappear
# from the model structure.
# Below is an example of decomposing a Transpose of 5 or more dimensions into a Transpose
# of 4 dimensions.
onnx2tf -i xxxx.onnx -nodaftc 4

# High-dimensional Slice(StridedSlice) decomposition
# If your special circumstances do not allow you to deploy a `StridedSlice` with more than
# 5 dimensions to a device, you can use the `-nodafsc` option to decompose the `StridedSlice`
# into a process with 4 or fewer dimensions.
# Below is an example of decomposing a `StridedSlice` of 5 or more dimensions into a
# `StridedSlice` of 4 dimensions.
onnx2tf -i xxxx.onnx -nodafsc 4

# Float16 inference doubling on devices with ARM64 ARMv8.2 or higher instruction set
# Double the inference speed with Float16 precision tflite models on devices with
# high-performance CPUs such as Snapdragon.
# (Pixel 3a, Pixel 5a, Pixel 7, Galaxy M12 and Galaxy S22, ...)
# XNNPACK float16 inference on certain ARM64 cores is 2x faster.
# Unfortunately, Float16 inference cannot be accelerated when using the RaspberryPi4's
# ARM64 CPU.
onnx2tf -i xxxx.onnx -eatfp16

# Parameter replacement (Resize,Transpose,Softmax)
rm replace.json
wget https://github.com/PINTO0309/onnx2tf/releases/download/1.1.27/human_segmentation_pphumanseg_2021oct.onnx
wget https://github.com/PINTO0309/onnx2tf/releases/download/1.1.27/replace.json
onnx2tf -i human_segmentation_pphumanseg_2021oct.onnx -prf replace.json

3. Accuracy check

Click to expand

Perform error checking of ONNX output and TensorFlow output. Verify that the error of all outputs, one operation at a time, is below a certain threshold. Automatically determines before and after which OPs the tool's automatic conversion of the model failed. Know where dimensional compression, dimensional expansion, and dimensional transposition by Reshape and Traspose are failing. Once you have identified the problem area, you can refer to the tutorial on Parameter replacement to modify the tool's behavior.

After many upgrades, the need for JSON parameter correction has become much less common, but there are still some edge cases where JSON correction is required. If the PC has sufficient free space in its RAM, onnx2tf will convert the model while carefully performing accuracy checks on all OPs. Thus, at the cost of successful model conversion, the conversion speed is a little slower. If the amount of RAM required for the accuracy check is expected to exceed 80% of the total available RAM capacity of the entire PC, the conversion operation will be performed without an accuracy check. Therefore, if the accuracy of the converted model is found to be significantly degraded, the accuracy may be automatically corrected by re-conversion on a PC with a large amount of RAM. For example, my PC has 128GB of RAM, but the StableDiffusion v1.5 model is too complex in its structure and consumed about 180GB of RAM in total with 50GB of SWAP space.

-ois an option to overwrite the input OP to a static size if it has undefined dimensions. -cotof option checks the accuracy of all OPs one by one. -cotoa is the error value of the threshold for determining an accuracy error. If there are undefined dimensions in the input OP, it is better to fix them to the static geometry to improve the accuracy of the accuracy measurement.

Also, you can use the -cind option to specify custom input for -cotof, instead of using the default dummy input. Otherwise, all input values will be set to 1. You can override the dummy input values with --value_hints (scalar only, *:default supported). For more information about the -cind option, please refer to here. If your input is image data in NHWC format, you can also use --test_data_nhwc_path to provide fixed test samples for validation.

Quick difference between -tdnp and -cind:

  • -tdnp (--test_data_nhwc_path): Validation-only test data for accuracy checks. Expects one NHWC RGB .npy ([N,H,W,3]). No mean/std. For multi-input models, this single array is reused across inputs (per-input mapping is not supported).
  • -cind (--custom_input_op_name_np_data_path): Per-input custom data mapping by input name. Supports multi-input/non-image inputs. Also used for INT8 calibration (-oiqt) with optional mean/std.

The -cotof option only compares the original ONNX and converted TensorFlow (Keras) models at Float32 precision, not at Float16 or INT8 precision.

onnx2tf -i mobilenetv2-12.onnx -ois input:1,3,224,224 -cotof -cotoa 1e-1

or

onnx2tf -i mobilenetv2-12.onnx -b 1 -cotof -cotoa 1e-1

or

onnx2tf -i mobilenetv2-12.onnx -cotof -cotoa 1e-1 -cind "input" "/your/path/x.npy"

or

onnx2tf -i mobilenetv2-12.onnx -cotof -cotoa 1e-1 -tdnp "/your/path/test_data_nhwc.npy"

or

onnx2tf -i mobilenetv2-12.onnx -cotof -cotoa 1e-1 --value_hints "input:0.5" "*:1.0"

image

Kazam_screencast_00108_

4. Match tflite input/output names and input/output order to ONNX

Click to expand

If you want to match tflite's input/output OP names and the order of input/output OPs with ONNX, you can use the interpreter.get_signature_runner() to infer this after using the -coion / --copy_onnx_input_output_names_to_tflite option to output tflite file. See: https://github.com/PINTO0309/onnx2tf/issues/228

onnx2tf automatically compares the final input/output shapes of ONNX and the generated TFLite and tries to automatically correct the input/output order as much as possible if there is a difference. However, if INT8 quantization is used and there are multiple inputs and outputs with the same shape, automatic correction may fail. This is because TFLiteConverter shuffles the input-output order by itself only when INT8 quantization is performed.

import torch
import onnxruntime
import numpy as np
import onnx2tf
import tensorflow as tf
from ai_edge_litert.interpreter import Interpreter

class Model(torch.nn.Module):
    def forward(self, x, y):
        return {
            "add": x + y,
            "sub": x - y,
        }

# Let's double check what PyTorch gives us
model = Model()
pytorch_output = model.forward(10, 2)
print("[PyTorch] Model Predictions:", pytorch_output)

# First, export the above model to ONNX
torch.onnx.export(
    Model(),
    {"x": 10, "y": 2},
    "model.onnx",
    opset_version=16,
    input_names=["x", "y"],
    output_names=["add", "sub"],
)

# And check its output
session = onnxruntime.InferenceSession("model.onnx")
onnx_output = session.run(["add", "sub"], {"x": np.array(10), "y": np.array(2)})
print("[ONNX] Model Outputs:", [o.name for o in session.get_outputs()])
print("[ONNX] Model Predictions:", onnx_output)

# Now, let's convert the ONNX model to TF
onnx2tf.convert(
    input_onnx_file_path="model.onnx",
    output_folder_path="model.tf",
    copy_onnx_input_output_names_to_tflite=True,
    non_verbose=True,
)

# Now, test the newer TFLite model
interpreter = Interpreter(model_path="model.tf/model_float32.tflite")
tf_lite_model = interpreter.get_signature_runner()
inputs = {
  'x': np.asarray([10], dtype=np.int64),
  'y': np.asarray([2], dtype=np.int64),
}
tf_lite_output = tf_lite_model(**inputs)
print("[TFLite] Model Predictions:", tf_lite_output)
[PyTorch] Model Predictions:
  {
    'add': 12,
    'sub': 8
  }
[ONNX] Model Outputs:
  [
    'add',
    'sub'
  ]
[ONNX] Model Predictions:
  [
    array(12, dtype=int64),
    array(8, dtype=int64)
  ]
[TFLite] Model Predictions:
  {
    'add': array([12]),
    'sub': array([8])
  }

image

5. Rewriting of tflite input/output OP names and signature_defs

Click to expand

If you do not like tflite input/output names such as serving_default_*:0 or StatefulPartitionedCall:0, you can rewrite them using the following tools and procedures. It can be rewritten from any name to any name, so it does not have to be serving_default_*:0 or StatefulPartitionedCall:0.

https://github.com/PINTO0309/tflite-input-output-rewriter

# Install custom flatc
wget https://github.com/PINTO0309/onnx2tf/releases/download/1.7.3/flatc.tar.gz \
&& tar -zxvf flatc.tar.gz \
&& sudo chmod +x flatc \
&& sudo mv flatc /usr/bin/ \
&& rm flatc.tar.gz

# Path check
which flatc
/usr/bin/flatc

# Install tfliteiorewriter
pip install -U tfliteiorewriter
  • Before

    01

    tfliteiorewriter \
    -i xxxx.tflite \
    -r serving_default_input_1:0 aaa \
    -r StatefulPartitionedCall:0 bbb
    

    02

  • After

    03

6. Embed metadata in tflite

Click to expand

If you want to embed label maps, quantization parameters, descriptions, etc. into your tflite file, you can refer to the official tutorial and try it yourself. For now, this tool does not plan to implement the ability to append metadata, as I do not want to write byte arrays to the tflite file that are not essential to its operation.

7. If the accuracy of the INT8 quantized model degrades significantly

Click to expand

It is a matter of model structure. The activation function (SiLU/Swish), kernel size and stride for Pooling, and kernel size and stride for Conv should be completely revised. See: https://github.com/PINTO0309/onnx2tf/issues/269

If you want to see the difference in quantization error between SiLU and ReLU, please check this Gist by @motokimura who helped us in our research. Thanks Motoki!

Gist: Quantization error simulation of SiLU (Swish) activation

The accuracy error rates after quantization for different activation functions are shown in the figure below. The graph plots the distribution of absolute error, so a position with a higher value on the horizontal axis indicates a larger error. The vertical axis is the number of samples. SiLU (Swish) produces catastrophic errors after INT8 quantization.

image

  • e.g. YOLOX-Nano

    • https://github.com/motokimura/yolox-ti-lite_tflite

    • https://github.com/TexasInstruments/edgeai-yolox

      Before After
      Swish/SiLU
      image
      ReLU
      image
      DepthwiseConv2D
      image
      Conv2D
      image
      MaxPool, kernel_size=5x5,9x9,13x13
      image
      MaxPool, kernel_size=3x3
      image
      ### Float32 - YOLOX-Nano
      (1, 52, 52, 85)
      array([[[
          [ 0.971787,  0.811184,  0.550566, ..., -5.962632, -7.403673, -6.735206],
          [ 0.858804,  1.351296,  1.231673, ..., -6.479690, -8.277064, -7.664936],
          [ 0.214827,  1.035119,  1.458006, ..., -6.291425, -8.229385, -7.761562],
              ...,
          [ 0.450116,  1.391900,  1.533354, ..., -5.672194, -7.121591, -6.880231],
          [ 0.593133,  2.112723,  0.968755, ..., -6.150078, -7.370633, -6.874294],
          [ 0.088263,  1.985220,  0.619998, ..., -5.507928, -6.914980, -6.234259]]]]),
      
      ### INT8 - YOLOX-Nano
      (1, 52, 52, 85)
      array([[[
          [ 0.941908,  0.770652,  0.513768, ..., -5.993958, -7.449634, -6.850238],
          [ 0.856280,  1.284420,  1.198792, ..., -6.507727, -8.391542, -7.792146],
          [ 0.256884,  0.941908,  1.455676, ..., -6.336471, -8.305914, -7.877774],
              ...,
          [ 0.342512,  1.370048,  1.541304, ..., -5.737075, -7.192750, -7.107122],
          [ 0.513768,  2.226327,  1.027536, ..., -6.165215, -7.449634, -7.021494],
          [ 0.085628,  2.055072,  0.685024, ..., -5.480191, -7.021494, -6.422099]]]]),
      
  • Other recommended replacement OP

    Before After
    HardSwish
    image
    ReLU
    image
    ReLU6
    image
    Paper: A Quantization-Friendly Separable Convolution for MobileNets https://arxiv.org/pdf/1803.08607.pdf
    ReLU
    image
  • Quantization range collapse due to non-zero constant padding

    If padding is performed with a constant other than zero, the padding value may destroy the quantization range of the input tensor. For example, the pattern is shown in the figure below. The MaxPool2D is done after padding the 4 sides of the input tensor with the minimum value of Float32. It seems that if INT8 quantization is performed with this structure, the quantization range is determined by MaxPool2D during quantization, including the values padded to the tensor. See: #444 image

    Therefore, the following two similar examples are equally likely to result in divergent output values for the model after INT8 quantization, with all output values being Nan or zero.

    1. Pattern with fixed value -255.0 padded on 4 sides of tensor image

    2. Pattern with fixed value -128.0 padded on 4 sides of tensor image

8. Calibration data creation for INT8 quantization

Click to expand

Calibration data (.npy) for INT8 quantization (-cind) is generated as follows. This is a sample when the data used for training is image data. See: https://github.com/PINTO0309/onnx2tf/issues/222

https://www.tensorflow.org/lite/performance/post_training_quantization

import cv2
import glob
import numpy as np

# Not used during data generation ################################
# You will need to do the calculations yourself using the test data
MEAN = np.asarray([[[[0.485, 0.456, 0.406]]]], dtype=np.float32) # [1,1,1,3]
STD = np.asarray([[[[0.229, 0.224, 0.225]]]], dtype=np.float32) # [1,1,1,3]
# Not used during data generation ################################

files = glob.glob("data/*.png")
img_datas = []
for idx, file in enumerate(files):
    bgr_img = cv2.imread(file)
    rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
    resized_img = cv2.resize(rgb_img, dsize=(200,112))
    extend_batch_size_img = resized_img[np.newaxis, :]
    normalized_img = extend_batch_size_img / 255.0 # 0.0 - 1.0
    print(
        f'{str(idx+1).zfill(2)}. extend_batch_size_img.shape: {extend_batch_size_img.shape}'
    ) # [1,112,200,3]
    img_datas.append(extend_batch_size_img)
calib_datas = np.vstack(img_datas)
print(f'calib_datas.shape: {calib_datas.shape}') # [10,112,200,3]
np.save(file='data/calibdata.npy', arr=calib_datas)

loaded_data = np.load('data/calibdata.npy')
print(f'loaded_data.shape: {loaded_data.shape}') # [10,112,200,3]

"""
-cind INPUT_NAME NUMPY_FILE_PATH MEAN STD
int8_calib_datas = (loaded_data - MEAN) / STD # -1.0 - 1.0

e.g. How to specify calibration data in CLI or Script respectively.
1. CLI
  -cind "pc_dep" "data/calibdata.npy" "[[[[0.485,0.456,0.406]]]]" "[[[[0.229,0.224,0.225]]]]"
  -cind "feat" "data/calibdata2.npy" "[[[[0.123,...,0.321]]]]" "[[[[0.112,...,0.451]]]]"

2. Script
  custom_input_op_name_np_data_path=[
      ["pc_dep", "data/calibdata.npy", [[[[0.485,0.456,0.406]]]], [[[[0.229,0.224,0.225]]]]],
      ["feat", "data/calibdata2.npy", [[[[0.123,...,0.321]]]], [[[[0.112,...,0.451]]]],
  ]
"""

9. INT8 quantization of models with multiple inputs requiring non-image data

Click to expand

If you do not need to perform INT8 quantization with this tool alone, the following method is the easiest.

The -osd option will output a saved_model.pb in the saved_model folder with the full size required for quantization. That is, a default signature named serving_default is embedded in .pb. The -b option is used to convert the batch size by rewriting it as a static integer.

Note: INT8 TFLite generated by following this procedure as is will result in a model with significantly degraded accuracy. This tutorial only demonstrates the INT8 quantization procedure; if you wish to correct for accuracy, please refer to Parameter replacement to correct for transposition errors in the operation.

# Ref: https://github.com/onnx/models/tree/main/text/machine_comprehension/bert-squad
wget https://s3.ap-northeast-2.wasabisys.com/temp-models/onnx2tf_248/bertsquad-12.onnx

onnx2tf -i bertsquad-12.onnx -b 1 -osd -cotof

image

Use the saved_model_cli command to check the saved_model signature. INT8 quantization calibration using signatures allows correct control of the input order of data for calibration. Therefore, calibration with signatures is recommended for INT8 quantization of models with multiple inputs.

saved_model_cli show --dir saved_model/ --tag_set serve --signature_def serving_default

The given SavedModel SignatureDef contains the following input(s):
  inputs['input_ids_0'] tensor_info:
      dtype: DT_INT64
      shape: (1, 256)
      name: serving_default_input_ids_0:0
  inputs['input_mask_0'] tensor_info:
      dtype: DT_INT64
      shape: (1, 256)
      name: serving_default_input_mask_0:0
  inputs['segment_ids_0'] tensor_info:
      dtype: DT_INT64
      shape: (1, 256)
      name: serving_default_segment_ids_0:0
  inputs['unique_ids_raw_output___9_0'] tensor_info:
      dtype: DT_INT64
      shape: (1)
      name: serving_default_unique_ids_raw_output___9_0:0

Calibrate by specifying the input OP name displayed in inputs. The np.ones([xxx], dtype=np.int64) part must be replaced with the correct calibration test data. In practice, several pieces of data used for training are extracted and used.

import tensorflow as tf
import numpy as np

def representative_dataset():
    unique_ids = np.ones([10, 256], dtype=np.int64)
    segment_ids = np.ones([10, 256], dtype=np.int64)
    input_masks = np.ones([10, 256], dtype=np.int64)
    input_ids = np.ones([10], dtype=np.int64)

    for unique_id, segment_id, input_mask, input_id \
        in zip(unique_ids, segment_ids, input_masks, input_ids):

        yield {
            "unique_ids_raw_output___9_0": unique_id,
            "segment_ids_0": segment_id,
            "input_mask_0": input_mask,
            "input_ids_0": input_id,
        }

converter = tf.lite.TFLiteConverter.from_saved_model('saved_model')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.int8  # or tf.uint8
converter.inference_output_type = tf.int8  # or tf.uint8
tflite_quant_model = converter.convert()

with open('saved_model/int8_model.tflite', 'wb') as w:
    w.write(tflite_quant_model)

image

https://www.tensorflow.org/lite/performance/post_training_quantization

See: https://github.com/PINTO0309/onnx2tf/issues/248

10. Fixing the output of NonMaxSuppression (NMS)

Click to expand

PyTorch's NonMaxSuppression (torchvision.ops.nms) and ONNX's NonMaxSuppression are not fully compatible. TorchVision's NMS is very inefficient. Therefore, it is inevitable that converting ONNX using NMS in object detection models and other models will be very redundant and will be converted with a structure that is difficult for TensorFlow.js and TFLite models to take advantage of in devices. This is due to the indefinite number of tensors output by the NMS. In this chapter, I share how to easily tune the ONNX generated using TorchVision's redundant NMS to generate an optimized NMS.

  1. There are multiple issues with TorchVision's NMS. First, the batch size specification is not supported; second, the max_output_boxes_per_class parameter cannot be specified. Please see the NMS sample ONNX part I generated. The max_output_boxes_per_class has been changed to 896 instead of -Infinity. The biggest problem with TorchVision NMS is that it generates ONNX with max_output_boxes_per_class set to -Infinity or 9223372036854775807 (Maximum value of INT64), resulting in a variable number of NMS outputs from zero to infinite. Thus, by rewriting -Infinity or 9223372036854775807 (Maximum value of INT64) to a constant value, it is possible to output an NMS that can be effortlessly inferred by TFJS or TFLite. image

    Here you will find committed ONNX components optimized for various devices. https://github.com/PINTO0309/components_of_onnx/tree/main/components_of_onnx/ops

  2. In the following example, the max_output_boxes_per_class of NMS in the post-processing generated by YOLOv7 is changed from -Infinity or 9223372036854775807 (Maximum value of INT64) to 20, as shown in the figure below. The name main01_max_output_boxes_per_class has been rewritten by me for clarity, but it originally appears as max_output_boxes_per_class. image

    Simply execute the following command. The command rewrites the specified attribute value of the OP specified by ONNX.

    pip install sam4onnx
    
    sam4onnx \
    --op_name main01_nonmaxsuppression11 \
    --input_onnx_file_path yolov7.onnx \
    --output_onnx_file_path nms_yolov7_update.onnx \
    --input_constants main01_max_output_boxes_per_class int64 [20]
    

    A tutorial on one of my ONNX modification tools, sam4onnx, can be found here.

    https://github.com/PINTO0309/sam4onnx

    Many detailed tutorials are provided below, so if you are interested, please play with them.

    https://github.com/PINTO0309/PINTO_model_zoo/tree/main/307_YOLOv7/post_process_gen_tools

  3. Finally, simply convert ONNX to TFLite or saved_model or TFJS using onnx2tf. onnx2tf performs an internal operation to automatically optimize the NMS output to a fixed shape if max_output_boxes_per_class is set to a value other than -Infinity and 9223372036854775807 (Maximum value of INT64). Specify --output_nms_with_dynamic_tensor or -onwdt if you do not want to optimize for a fixed shape. If you want to shrink class scores in NMS from [B, C, N] to [B, 1, N], enable --output_nms_with_argmax or -onwa.

    onnx2tf -i nms_yolov7_update.onnx -osd -cotof
    

    I would be happy if this is a reference for Android + Java or TFJS implementations. There are tons more tricky model optimization techniques described in my blog posts, so you'll have to find them yourself. I don't dare to list the URL here because it is annoying to see so many issues being posted. And unfortunately, all articles are in Japanese. image

11. RNN (RNN, GRU, LSTM) Inference Acceleration

Click to expand

TensorFlow's RNN has a speedup option called unroll. The network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. onnx2tf allows you to deploy RNNs into memory-intensive operations by specifying the --enable_rnn_unroll or -eru options. The --enable_rnn_unroll option is available for RNN, GRU, and LSTM.

An example of BidirectionalLSTM conversion with the --enable_rnn_unroll option is shown below. Please ignore that the shapes of the input and output tensors do not match, since the samples are shown by picking up separate models.

  • ONNX LSTM (Bidirectional)

    image

  • BidirectionalLSTM with --enable_rnn_unroll option unspecified

    Recurrent layer is implemented from scratch.

    image

  • BidirectionalLSTM with --enable_rnn_unroll option

    image

12. If the accuracy of the Float32 model degrades significantly

Click to expand

The pattern of accuracy degradation of the converted model does not only occur when INT8 quantization is performed. A special edge case is when there is a problem with the implementation of a particular OP on the TFLite runtime side. Below, I will reproduce the problem by means of a very simple CNN model and further explain its workaround. Here is the issue that prompted me to add this explanation. [Conv-TasNet] Facing issue in converting Conv-TasNet model #447

Download a sample model for validation.

curl \
-L https://github.com/PINTO0309/onnx2tf/files/12367312/prelu_check.onnx.zip \
-o prelu_check.onnx.zip

unzip prelu_check.onnx.zip

The part of the downloaded model where the problem occurs is the PRelu part in the figure below.

  • ONNX

    image

Reproduce the problem. The following command converts an ONNX file to a TFLite file.

onnx2tf -i prelu_check.onnx -cotof

The conversion was successful and, as shown in the figure below, the inference test results from ONNX and the inference results for the Float32 model in TensorFlow (Keras) match perfectly. It is important to note that the comparison of inference results between ONNX and TensorFlow transformed models is comparing ONNX models with TensorFlow (Keras) models, not ONNX models with TFLite models.

  • Conversion results

    20230817175146

  • tflite

    20230817175530

Now, let's try inference with the TFLite runtime instead of the TensorFlow runtime.

  • test.py
    import time
    import numpy as np
    np.random.seed(0)
    from ai_edge_litert.interpreter import Interpreter
    
    # Load TFLite model
    interpreter = Interpreter(model_path="./saved_model/prelu_check_float32.tflite")
    interpreter.allocate_tensors()
    tensor_shape = (256, 20)
    input_data = {'waveform': np.random.randn(*tensor_shape).astype(np.float32)}
    
    # Load and preprocess
    input_details = interpreter.get_input_details()
    input_shape = input_details[0]['shape']
    print(input_shape)
    
    # Run inference
    interpreter.set_tensor(input_details[0]['index'], input_data["waveform"])
    separate_time = time.time()
    interpreter.invoke()
    print("Done! {:.3f} s".format(time.time() - separate_time))
    output_details = interpreter.get_output_details()
    output_data = interpreter.get_tensor(output_details[0]['index'])
    
    output_data = []
    for output_detail in output_details:
        output_data.append(interpreter.get_tensor(output_detail['index']))
    
    print(output_data)
    

Oddly enough, the output value of PReLU contains multiple nan. However, as can be seen by converting the ONNX model to the middle of the model using the -onimc option, nan does not occur until just before PReLU. Thus, it is clear that the PReLU OP in the TFLite runtime has a problem with divergent inference results.

  • TFLite inference results

    20230817175454

The following is a work-around to avoid this problem. Use the -rtpo option to replace PReLU with a similar primitive operation when transforming a model, and then perform the model transformation.

onnx2tf -i prelu_check.onnx -cotof -rtpo PReLU

As before, the inference results from ONNX and TensorFlow (Keras) match perfectly.

  • Conversion results

    20230817175614

However, -rtpo PReLU will generate a .tflite file with the PRelu OP replaced by a primitive OP combination.

  • tflite

    20230817175724

Again, run the test code to check the inference results. The figure below shows that no nan occurs when inference is performed by replacing the PReLU OP with only combinations of primitive operations. In other words, it is important to know that large arithmetic errors are not only due to the broken structure of the model, but can also be caused by internal implementations such as the TFLite runtime. I have implemented the -rtpo option to replace operators as a work-around to avoid such runtime problems.

  • TFLite inference results

    20230817175701

13. Problem of extremely large calculation error in InstanceNormalization

Click to expand

Even if the conversion is successful, InstanceNormalization tends to have very large errors. This is an ONNX specification.

I verified this with a very simple sample model. There are more than 8 million elements, and the calculation error reached 1e-2.

image

image

14. Inference with dynamic tensors in TFLite

Click to expand

For some time now, TFLite runtime has supported inference by dynamic tensors. However, the existence of this important function is not widely recognized. In this chapter, I will show how I can convert an ONNX file that contains dynamic geometry in batch size directly into a TFLite file that contains dynamic geometry and then further infer it in variable batch conditions. The issue that inspired me to add this tutorial is here. [Dynamic batch / Dynamic shape] onnx model with dynamic input is converted to tflite with static input 1 #441, or Cannot use converted model with dynamic input shape #521

First, download the sample ONNX file.

wget https://s3.ap-northeast-2.wasabisys.com/temp-models/onnx2tf_441/osnet_x0_25_msmt17.onnx

This model calculates the similarity of features by cosine similarity. The batch size dimension of the input tensor is batch, allowing various numbers of images to be input simultaneously. This is often used, for example, to achieve tracking by calculating the similarity of people or objects reflected between successive video frames. However, the total number of objects to be tracked changes rapidly with each video frame because the number of people and objects in the image constantly increases and decreases. Therefore, there is a very significant use case for generating models with variable settings for the number of input images (batch size) of the model.

image

Convert the downloaded OSNet to tflite and saved_model as a variable batch. If you do not specify the -b or -ois options, onnx2tf does not change the batch size as N. The only important point is to convert the model with the -osd and -coion options. Note that if you use the -coion option, you must install flatbuffers-compiler with apt-get install, run the commands for building the environment described first in this README, or use a Docker container.

onnx2tf -i osnet_x0_25_msmt17.onnx -osd -coion
  • .tflite

    When viewing tflite in Netron, the batch size appears to be fixed at 1. image

  • saved_model

    However, checking the structure of saved_model, the batch size is correctly set to -1.

    saved_model_cli show --dir saved_model/ --all
    
    MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
    
    signature_def['__saved_model_init_op']:
      The given SavedModel SignatureDef contains the following input(s):
      The given SavedModel SignatureDef contains the following output(s):
        outputs['__saved_model_init_op'] tensor_info:
            dtype: DT_INVALID
            shape: unknown_rank
            name: NoOp
      Method name is:
    
    signature_def['serving_default']:
      The given SavedModel SignatureDef contains the following input(s):
        inputs['images'] tensor_info:
            dtype: DT_FLOAT
            shape: (-1, 256, 128, 3)
            name: serving_default_images:0
      The given SavedModel SignatureDef contains the following output(s):
        outputs['output'] tensor_info:
            dtype: DT_FLOAT
            shape: (-1, 512)
            name: PartitionedCall:0
      Method name is: tensorflow/serving/predict
    

To prove that the tflite structure has been converted correctly, I will convert the tflite to JSON and look at the structure.

docker run --rm -it \
-v `pwd`:/home/user/workdir \
ghcr.io/pinto0309/tflite2json2tflite:latest

./flatc -t \
--strict-json \
--defaults-json \
-o workdir \
./schema.fbs -- workdir/saved_model/osnet_x0_25_msmt17_float32.tflite

ls -l workdir

-rw-rw-r-- 1 user user   921564 Aug  4 10:24 osnet_x0_25_msmt17.onnx
-rw-r--r-- 1 user user 10369524 Aug  4 10:30 osnet_x0_25_msmt17_float32.json
drwxrwxr-x 4 user user     4096 Aug  4 10:26 saved_model

image

  • osnet_x0_25_msmt17_float32.json

    "shape_signature" is correctly set to -1. However, "shape" is set to 1. This could be a problem with TFLiteConverter, or it could be a problem with Netron's graphical display capabilities. image

In other words, although onnx2tf converts TFLiteConverer as specified, with the batch size of -1 without any model processing, only Netron's display is broken. This is a problem I have known for quite some time. However, the inference itself does not cause the problem.

If you want to infer in variable batches, you need to infer using signature. In such cases, the -coion option must be specified when converting the model. Note that I have identified a problem with quantization with the -coion option, which can corrupt tflite files. https://github.com/PINTO0309/onnx2tf/issues/429

https://github.com/PINTO0309/onnx2tf#4-match-tflite-inputoutput-names-and-inputoutput-order-to-onnx

You can use signature_runner to handle dynamic input tensors by performing inference using signature. Below I show that both batch_size=5 and batch_size=3 tensors can be inferred with the same model.

  • test.py - Batch size: 5
    import numpy as np
    from ai_edge_litert.interpreter import Interpreter
    from pprint import pprint
    
    interpreter = Interpreter(model_path="saved_model/osnet_x0_25_msmt17_float32.tflite")
    tf_lite_model = interpreter.get_signature_runner()
    inputs = {
        'images': np.ones([5,256,128,3], dtype=np.float32),
    }
    tf_lite_output = tf_lite_model(**inputs)
    print(f"[TFLite] Model Predictions shape: {tf_lite_output['output'].shape}")
    print(f"[TFLite] Model Predictions:")
    pprint(tf_lite_output)
    
  • Results
    [TFLite] Model Predictions shape: (5, 512)
    [TFLite] Model Predictions:
    {'output': array([[0.0000000e+00, 2.4730086e-04, 0.0000000e+00, ..., 1.0528549e+00,
            3.7874988e-01, 0.0000000e+00],
           [0.0000000e+00, 2.4730086e-04, 0.0000000e+00, ..., 1.0528549e+00,
            3.7874988e-01, 0.0000000e+00],
           [0.0000000e+00, 2.4730086e-04, 0.0000000e+00, ..., 1.0528549e+00,
            3.7874988e-01, 0.0000000e+00],
           [0.0000000e+00, 2.4730086e-04, 0.0000000e+00, ..., 1.0528549e+00,
            3.7874988e-01, 0.0000000e+00],
           [0.0000000e+00, 2.4730084e-04, 0.0000000e+00, ..., 1.0528525e+00,
            3.7874976e-01, 0.0000000e+00]], dtype=float32)}
    
  • test.py - Batch size: 3
    import numpy as np
    from ai_edge_litert.interpreter import Interpreter
    from pprint import pprint
    
    interpreter = Interpreter(model_path="saved_model/osnet_x0_25_msmt17_float32.tflite")
    tf_lite_model = interpreter.get_signature_runner()
    inputs = {
        'images': np.ones([3,256,128,3], dtype=np.float32),
    }
    tf_lite_output = tf_lite_model(**inputs)
    print(f"[TFLite] Model Predictions shape: {tf_lite_output['output'].shape}")
    print(f"[TFLite] Model Predictions:")
    pprint(tf_lite_output)
    
  • Results
    [TFLite] Model Predictions shape: (3, 512)
    [TFLite] Model Predictions:
    {'output': array([[0.0000000e+00, 2.4730084e-04, 0.0000000e+00, ..., 1.0528525e+00,
            3.7874976e-01, 0.0000000e+00],
           [0.0000000e+00, 2.4730084e-04, 0.0000000e+00, ..., 1.0528525e+00,
            3.7874976e-01, 0.0000000e+00],
           [0.0000000e+00, 2.4730084e-04, 0.0000000e+00, ..., 1.0528525e+00,
            3.7874976e-01, 0.0000000e+00]], dtype=float32)}
    

15. Significant optimization of the entire model through Einsum and OneHot optimizations

Click to expand

Einsum and OneHot are not optimized to the maximum by the standard behavior of onnx-optimizer. Therefore, pre-optimizing the Einsum OP and OneHot OP using my original method can significantly improve the success rate of model conversion, and the input ONNX model itself can be significantly optimized compared to when onnxsim alone is optimized. See: https://github.com/PINTO0309/onnx2tf/issues/569

For example

python export.py \
--img_size 512 512 \
--lightglue_path weights/sjy_fused_static.onnx \
--end2end

pip install -U spo4onnx onnx2tf

cd weights
spo4onnx -if sjy_fused_static.onnx -of sjy_fused_static_spo.onnx

onnx2tf -i sjy_fused_static_spo.onnx

image

16. Add constant outputs to the model that are not connected to the model body

Click to expand

Sometimes you want to always output constants that are not connected to the model body. See: https://github.com/PINTO0309/onnx2tf/issues/627. For example, in the case of ONNX as shown in the figure below. You may want to keep scaling parameters and other parameters as fixed values inside the model and always include the same value in the output.

image

In such cases, the process of optimizing the ONNX file in onnxsim must be bypassed and not executed. You can bypass the execution of onnxsim by specifying -nuo or --not_use_onnxsim as a conversion option. Running onnxsim will remove constants from the model definition that are not connected to the body of the model in the process of optimizing the model structure.

wget https://github.com/PINTO0309/onnx2tf/files/15292126/toy_with_constant.onnx.zip
unzip toy_with_constant.onnx.zip
onnx2tf -i toy_with_constant.onnx -nuo -cotof

The relationship between the ONNX before conversion and the TFLite file after conversion is shown in the figure below.

ONNX TFLite
image image

image

Use the generated TFLite file to inference and ensure that it always contains fixed value output.

from ai_edge_litert.interpreter import Interpreter
import numpy as np
from pprint import pprint

interpreter = Interpreter(model_path="saved_model/toy_with_constant_float32.tflite")
interpreter.allocate_tensors()

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

interpreter.set_tensor(
    tensor_index=input_details[0]['index'],
    value=np.ones(tuple(input_details[0]['shape']), dtype=np.float32)
)
interpreter.invoke()

variable_output = interpreter.get_tensor(output_details[0]['index'])
constant_output = interpreter.get_tensor(output_details[1]['index'])

print("=================")
print("Variable Output:")
pprint(variable_output)
print("=================")
print("Constant Output:")
pprint(constant_output)
=================
Variable Output:
array([[-0.02787317, -0.05505124,  0.05421712,  0.03526559, -0.14131774,
         0.0019211 ,  0.08399964,  0.00433664, -0.00984338, -0.03370604]],
      dtype=float32)
=================
Constant Output:
array([1., 2., 3., 4., 5.], dtype=float32)

17. Conversion of models that use variable length tokens and embedding, such as LLM and sound models

Click to expand

This refers to a model with undefined dimensions, either all dimensions or multiple dimensions including batch size, as shown in the figure below.

If such a model is converted without any options, TensorFlow/Keras will abort. This is an internal TensorFlow/Keras implementation issue rather than an onnx2tf issue. TensorFlow/Keras does not allow more than two undefined dimensions in the shape attribute of Reshape due to the specification, so an error occurs during the internal transformation operation of the Reshape OP as shown below. This has been an inherent problem in TensorFlow/Keras since long ago and has not been resolved to this day. See: RuntimeError: tensorflow/lite/kernels/range.cc:39 (start > limit && delta < 0) || (start < limit && delta > 0) was not true.Node number 3 (RANGE) failed to invoke. Node number 393 (WHILE) failed to invoke. current error :RuntimeError: tensorflow/lite/kernels/reshape.cc:55 stretch_dim != -1 (0 != -1)Node number 83 (RESHAPE) failed to prepare. #40504

  • OP where the problem occurs

    image

  • Error message

    error: 'tf.Reshape' op requires 'shape' to have at most one dynamic dimension, but got multiple dynamic dimensions at indices 0 and 3
    

Thus, for models such as this, where all dimensions, including batch size, are dynamic shapes, it is often possible to convert by fixing the batch size to 1 with the -b 1 or --batch_size 1 option.

onnx2tf -i model.onnx -b 1 -osd
  • Results

    image

    When the converted tflite is displayed in Netron, all the dimensions of the dynamic shape are displayed as 1, but this is a display problem in Netron, and the shape is actually converted to -1 or None.

    image

Click here to see how to perform inference using the dynamic shape tensor.

https://github.com/PINTO0309/onnx2tf/tree/main?tab=readme-ov-file#14-inference-with-dynamic-tensors-in-tflite

18. Convert only the intermediate structural part of the ONNX model

Click to expand

By specifying ONNX input or output names, only the middle part of the model can be converted. This is useful when you want to see what output is obtained in what part of the model after conversion, or when debugging the model conversion operation itself.

For example, take a model with multiple inputs and multiple outputs as shown in the figure below to try a partial transformation.

image

  • To convert by specifying only the input name to start the conversion

    wget https://github.com/PINTO0309/onnx2tf/releases/download/1.25.0/cf_fus.onnx
    onnx2tf -i cf_fus.onnx -inimc 448 -coion
    

    image

  • To convert by specifying only the output name to end the conversion

    wget https://github.com/PINTO0309/onnx2tf/releases/download/1.25.0/cf_fus.onnx
    onnx2tf -i cf_fus.onnx -onimc dep_sec -coion
    

    image

  • To perform a conversion by specifying the input name to start the conversion and the output name to end the conversion

    wget https://github.com/PINTO0309/onnx2tf/releases/download/1.25.0/cf_fus.onnx
    onnx2tf -i cf_fus.onnx -inimc 448 -onimc velocity -coion
    

    image

19. Conversion to TensorFlow.js

Click to expand

When converting to TensorFlow.js, process as follows.

pip install -U --no-deps \
tensorflowjs \
tensorflow_decision_forests \
ydf \
tensorflow_hub

onnx2tf -i mobilenetv2-12.onnx -ois input:1,3,224,224 -osd -dgc

tensorflowjs_converter \
--input_format tf_saved_model \
--output_format tfjs_graph_model \
saved_model \
tfjs_model

See: https://github.com/tensorflow/tfjs/tree/master/tfjs-converter

image

20. Conversion to CoreML

Click to expand

When converting to CoreML, process as follows. The -k option is for conversion while maintaining the input channel order in ONNX's NCHW format.

pip install coremltools==8.2

onnx2tf -i mobilenetv2-12.onnx -k input -ois input:1,3,224,224 -osd
import coremltools as ct

FOLDER_PATH = 'saved_model'

model = ct.convert(
    model=FOLDER_PATH,
    source='tensorflow',
)
model.save(f'{FOLDER_PATH}/model.mlpackage')

See: https://github.com/apple/coremltools

image

CLI Parameter

Click to expand
onnx2tf -h

usage: onnx2tf
[-h]
(-i INPUT_ONNX_FILE_PATH | -V)
[-o OUTPUT_FOLDER_PATH]
[-osd]
[-oh5]
[-okv3]
[-otfv1pb]
[-ow]
[-coion]
[-odrqt]
[-oiqt]
[-qt {per-channel,per-tensor}]
[-cind INPUT_NAME NUMPY_FILE_PATH MEAN STD]
[-iqd {int8,uint8,float32}]
[-oqd {int8,uint8,float32}]
[-nuo]
[-nuonag]
[-b BATCH_SIZE]
[-ois OVERWRITE_INPUT_SHAPE [OVERWRITE_INPUT_SHAPE ...]]
[-sh SHAPE_HINTS [SHAPE_HINTS ...]]
[-nlt]
[-onwdt]
[-snms {v4,v5}]
[-k KEEP_NCW_OR_NCHW_OR_NCDHW_INPUT_NAMES [KEEP_NCW_OR_NCHW_OR_NCDHW_INPUT_NAMES ...]]
[-kt KEEP_NWC_OR_NHWC_OR_NDHWC_INPUT_NAMES [KEEP_NWC_OR_NHWC_OR_NDHWC_INPUT_NAMES ...]]
[-kat KEEP_SHAPE_ABSOLUTELY_INPUT_NAMES [KEEP_SHAPE_ABSOLUTELY_INPUT_NAMES ...]]
[-inimc INPUT_NAMES [INPUT_NAMES ...]]
[-onimc OUTPUT_NAMES [OUTPUT_NAMES ...]]
[-dgc]
[-eatfp16]
[-ebu]
[-eru]
[-dsft]
[-nodaftc]
[-dsfs]
[-dsm]
[-nodafsc]
[-ofgd]
[-rari64 | -rarf32 | -rafi64 | -raff32]
[-fasr FUSED_ARGMAX_SCALE_RATIO]
[-rtpo REPLACE_TO_PSEUDO_OPERATORS [REPLACE_TO_PSEUDO_OPERATORS ...]]
[-me MVN_EPSILON]
[-prf PARAM_REPLACEMENT_FILE]
[-cgdc]
[-coto | -cotof]
[-coton]
[-cotor CHECK_ONNX_TF_OUTPUTS_ELEMENTWISE_CLOSE_RTOL]
[-cotoa CHECK_ONNX_TF_OUTPUTS_ELEMENTWISE_CLOSE_ATOL]
[-tdnp TEST_DATA_NHWC_PATH]
[-agj]
[-dms]
[-uc]
[-n]
[-v]

optional arguments:
  -h, --help
    show this help message and exit

  -i INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
    Input onnx file path.

  -V, --version
    Show version and exit.

  -o OUTPUT_FOLDER_PATH, --output_folder_path OUTPUT_FOLDER_PATH
    Output folder path. Default: "saved_model"

  -osd, --output_signaturedefs
    Signature is added to the output for serving or for conversion
    to other model formats. However, this can significantly reduce the speed
    of model conversion and significant increase the size of the model.

  -oh5, --output_h5
    Output model in Keras (hdf5) format.

  -okv3, --output_keras_v3
    Output model in Keras (keras_v3) format.

  -otfv1pb, --output_tfv1_pb
    Output model in TF v1 (.pb) format.

  -ow, --output_weights
    Output weights in hdf5 format.

  -coion, --copy_onnx_input_output_names_to_tflite
    Copy the input/output OP name of ONNX to the input/output OP name of tflite.
    Due to Tensorflow internal operating specifications,
    the input/output order of ONNX does not necessarily match
    the input/output order of tflite.
    Be sure to check that the input/output OP names in the generated
    tflite file have been converted as expected.
    Also, this option generates a huge JSON file as a temporary file for processing.
    Therefore, it is strongly discouraged to use it on large models of hundreds
    of megabytes or more.

  -odrqt, --output_dynamic_range_quantized_tflite
    Output of dynamic range quantized tflite.

  -oiqt, --output_integer_quantized_tflite
    Output of integer quantized tflite.

  -tb {tf_converter,flatbuffer_direct}, \
    --tflite_backend {tf_converter,flatbuffer_direct}
    TFLite generation backend.
    "tf_converter"(default): Use TensorFlow Lite Converter.
    "flatbuffer_direct": Experimental direct FlatBuffer builder path (limited OP/quantization support).

    flatbuffer_direct notes:
    1. `flatbuffer_direct` is experimental; always validate model-by-model before production rollout.
    2. Direct export supports FP32/FP16 `.tflite` generation.
    3. Dynamic range quantization (`-odrqt`) is supported in a limited form:
       weight-only INT8 quantization for `CONV_2D`, `DEPTHWISE_CONV_2D`, `FULLY_CONNECTED`,
       and constant tensor quantization + `DEQUANTIZE` insertion for `ADD`, `SUB`, `MUL`, `DIV`, `CONCATENATION`.
       For kernel weights, `--quant_type per-channel` and `--quant_type per-tensor` are both supported in `flatbuffer_direct`.
    4. Integer quantization (`-oiqt`) is supported in a limited form:
       `*_integer_quant.tflite`, `*_full_integer_quant.tflite`,
       `*_integer_quant_with_int16_act.tflite`, `*_full_integer_quant_with_int16_act.tflite` are generated.
    5. Supported builtin OP set includes:
       `ADD`, `SUB`, `MUL`, `DIV`, `FLOOR_MOD`, `MAXIMUM`, `MINIMUM`, `POW`,
       `MEAN`, `SUM`, `REDUCE_MAX`, `RESHAPE`, `TRANSPOSE`, `SQUEEZE`, `SLICE`, `STRIDED_SLICE`,
       `CONCATENATION`, `GATHER`, `GATHER_ND`, `ONE_HOT`,
       `ARG_MAX`, `CAST`, `SHAPE`, `FILL`,
       `LOGISTIC`, `RELU`, `RELU6`, `TANH`, `EXP`, `SQRT`, `NEG`, `LOG`,
       `SOFTMAX`, `L2_NORMALIZATION`, `LOCAL_RESPONSE_NORMALIZATION`,
       `CONV_2D`, `DEPTHWISE_CONV_2D`, `TRANSPOSE_CONV`, `AVERAGE_POOL_2D`, `MAX_POOL_2D`, `FULLY_CONNECTED`, `BATCH_MATMUL`,
       `RESIZE_NEAREST_NEIGHBOR`, `RESIZE_BILINEAR`,
       `BIDIRECTIONAL_SEQUENCE_LSTM`, `SPLIT`, `EXPAND_DIMS`,
       `DEQUANTIZE`, `QUANTIZE`.
    6. Unsupported OPs fail explicitly with `NotImplementedError`.
    7. Custom OP policy (opt-in):
       `--flatbuffer_direct_allow_custom_ops` enables lowering selected hard ops as TFLite `CUSTOM`.
       `--flatbuffer_direct_custom_op_allowlist` (comma-separated ONNX OP names) restricts allowed custom lowering targets.
       If a custom-op candidate appears while disabled, conversion fails with `reason_code=custom_op_candidate_disabled`.
       If enabled but not in allowlist, conversion fails with `reason_code=custom_op_not_in_allowlist`.
    8. `schema.fbs` is fetched from LiteRT by pinned tag by default (`v2.1.2`), and can be overridden by:
       `ONNX2TF_TFLITE_SCHEMA_REPOSITORY`, `ONNX2TF_TFLITE_SCHEMA_TAG`, `ONNX2TF_TFLITE_SCHEMA_RELATIVE_PATH`.
    9. flatbuffer_direct quantization precision controls are configurable via environment variables:
       `ONNX2TF_FLATBUFFER_DIRECT_CALIBRATION_METHOD` (`max` or `percentile`),
       `ONNX2TF_FLATBUFFER_DIRECT_CALIBRATION_PERCENTILE` (e.g. `99.99`),
       `ONNX2TF_FLATBUFFER_DIRECT_QUANT_MIN_NUMEL`,
       `ONNX2TF_FLATBUFFER_DIRECT_QUANT_MIN_ABS_MAX`,
       `ONNX2TF_FLATBUFFER_DIRECT_QUANT_SCALE_FLOOR`.
    10. Optional fallback:
       `--flatbuffer_direct_fallback_to_tf_converter` falls back to tf_converter when direct export fails.
    11. Migration guide:
       See `FLATBUFFER_DIRECT_MIGRATION_GUIDE.md` for staged rollout and CI operation patterns.

  -qt {per-channel,per-tensor}, --quant_type {per-channel,per-tensor}
    Selects whether "per-channel" or "per-tensor" quantization is used.
    Default: "per-channel"

  -qnm QUANT_NORM_MEAN, --quant_norm_mean QUANT_NORM_MEAN
    Normalized average value during quantization.
    Only valid when the "-cind" option is not used.
    Default: "[[[[0.485, 0.456, 0.406]]]]"

  -qns QUANT_NORM_STD, --quant_norm_std QUANT_NORM_STD
    Normalized standard deviation during quantization.
    Only valid when the "-cind" option is not used.
    Default: "[[[[0.229, 0.224, 0.225]]]]"

  -cind INPUT_NAME NUMPY_FILE_PATH MEAN STD, \
    --custom_input_op_name_np_data_path INPUT_NAME NUMPY_FILE_PATH MEAN STD
    Input name of OP and path of data file (Numpy) for custom input for -cotof or -oiqt,
    and mean (optional) and std (optional).
    Unlike -tdnp, this option supports per-input mapping, non-image tensors, and INT8 calibration.

    <Usage in -cotof>
      When using -cotof, custom input defined by the user, instead of dummy data, is used.
      In this case, mean and std are omitted from the input.
      -cind {input_op_name} {numpy_file_path}
      e.g. -cind onnx::Equal_0 test_cind/x_1.npy -cind onnx::Add_1 test_cind/x_2.npy -cotof
      The input_op_name must be the same as in ONNX,
      and it may not work if the input format is different between ONNX and TF.

    <Usage in -oiqt>
      INPUT Name of OP and path of calibration data file (Numpy) for quantization
      and mean and std.
      The specification can be omitted only when the input OP is a single 4D tensor image data.
      If omitted, it is automatically calibrated using 20 normalized MS-COCO images.
      The type of the input OP must be Float32.
      Data for calibration must be pre-normalized to a range of 0 to 1.
      -cind {input_op_name} {numpy_file_path} {mean} {std}
      Numpy file paths must be specified the same number of times as the number of input OPs.
      Normalize the value of the input OP based on the tensor specified in mean and std.
      (input_value - mean) / std
      Tensors in Numpy file format must be in dimension order after conversion to TF.
      Note that this is intended for deployment on low-resource devices,
      so the batch size is limited to 1 only.

      e.g.
      The example below shows a case where there are three input OPs.
      Assume input0 is 128x128 RGB image data.
      In addition, input0 should be a value that has been divided by 255
      in the preprocessing and normalized to a range between 0 and 1.
      input1 and input2 assume the input of something that is not an image.
      Because input1 and input2 assume something that is not an image,
      the divisor is not 255 when normalizing from 0 to 1.
      "n" is the number of calibration data.

      ONNX INPUT shapes:
        input0: [n,3,128,128]
            mean: [1,3,1,1] -> [[[[0.485]],[[0.456]],[[0.406]]]]
            std:  [1,3,1,1] -> [[[[0.229]],[[0.224]],[[0.225]]]]
        input1: [n,64,64]
            mean: [1,64] -> [0.1, ..., 0.64]
            std:  [1,64] -> [0.05, ..., 0.08]
        input2: [n,5]
            mean: [1] -> [0.3]
            std:  [1] -> [0.07]
      TensorFlow INPUT shapes (Numpy file ndarray shapes):
        input0: [n,128,128,3]
            mean: [1,1,1,3] -> [[[[0.485, 0.456, 0.406]]]]
            std:  [1,1,1,3] -> [[[[0.229, 0.224, 0.225]]]]
        input1: [n,64,64]
            mean: [1,64] -> [0.1, ..., 0.64]
            std:  [1,64] -> [0.05, ..., 0.08]
        input2: [n,5]
            mean: [1] -> [0.3]
            std:  [1] -> [0.07]
      -cind "input0" "../input0.npy" "[[[[0.485,0.456,0.406]]]]" "[[[[0.229,0.224,0.225]]]]"
      -cind "input1" "./input1.npy" "[0.1,...,0.64]" "[0.05,...,0.08]"
      -cind "input2" "input2.npy" "[0.3]" "[0.07]"

    <Using -cotof and -oiqt at the same time>
      To use -cotof and -oiqt simultaneously,
      you need to enter the Input name of OP, path of data file, mean, and std all together.
      And the data file must be in Float32 format,
      and {input_op_name}, {numpy_file_path}, {mean}, and {std} must all be entered.
      Otherwise, an error will occur during the -oiqt stage.

  -iqd {int8,uint8,float32}, --input_quant_dtype {int8,uint8,float32}
    Input dtypes when doing Full INT8 Quantization.
    "int8"(default) or "uint8" or "float32"

  -oqd {int8,uint8,float32}, --output_quant_dtype {int8,uint8,float32}
    Output dtypes when doing Full INT8 Quantization.
    "int8"(default) or "uint8" or "float32"

  -nuo, --not_use_onnxsim
    No optimization by onnx-simplifier is performed.
    If this option is used, the probability of a conversion error is very high.

  -nuonag, --not_use_opname_auto_generate
    Automatic generation of each OP name in the old format ONNX file
    and assignment of OP name are not performed.

  -b BATCH_SIZE, --batch_size BATCH_SIZE
    Fixes the dynamic batch size to the specified numeric batch size.
    A value of 1 or more must be specified.

  -ois OVERWRITE_INPUT_SHAPE [OVERWRITE_INPUT_SHAPE ...], \
      --overwrite_input_shape OVERWRITE_INPUT_SHAPE [OVERWRITE_INPUT_SHAPE ...]
    Overwrite the input shape.
    The format is
    "i1:dim0,...,dimN" "i2:dim0,...,dimN" "i3:dim0,...,dimN"
    When there is only one input, for example,
    "data:1,3,224,224"
    When there are multiple inputs, for example,
    "data1:1,3,224,224" "data2:1,3,112" "data3:5"
    A value of 1 or more must be specified.
    Numerical values other than dynamic dimensions are ignored.
    Ignores --batch_size if specified at the same time as --batch_size.

  -sh SHAPE_HINTS [SHAPE_HINTS ...], \
      --shape_hints SHAPE_HINTS [SHAPE_HINTS ...]
    Shape hints for input tensors containing dynamic dimensions.
    Specify input shapes for test inference with -cotof or -coto.
    Unlike `--overwrite_input_shape`, this operation does not overwrite
    the ONNX input shape with a static shape.
    The format is
    "i1:dim0,...,dimN" "i2:dim0,...,dimN" "i3:dim0,...,dimN"
    When there is only one input, for example,
    "data:1,3,224,224"
    When there are multiple inputs, for example,
    "data1:1,3,224,224" "data2:1,3,112" "data3:5"
    A value of 1 or more must be specified.
    Numerical values other than dynamic dimensions are ignored.

  -vh VALUE_HINTS [VALUE_HINTS ...], \
      --value_hints VALUE_HINTS [VALUE_HINTS ...]
    Value hints for dummy inference input tensors.
    The format is
    "input_name_1:value" "input_name_2:value" "*:default_value"
    "*" applies to all inputs not explicitly specified.
    Values are scalar only.

  -nlt, --no_large_tensor
    Suppresses constant bloat caused by Tile OP when optimizing models in onnxsim.
    See: https://github.com/daquexian/onnx-simplifier/issues/178

  -onwdt, --output_nms_with_dynamic_tensor
    The number of bounding boxes in the NMS output results is
    not fixed at the maximum number of max_output_boxes_per_class,
    but rather at the smallest possible number of dynamic tensors.
    If this option is disabled, NMS output is padded to the number
    set in the max_output_boxes_per_class attribute.
    e.g.
    disable --output_nms_with_dynamic_tensor:
        output_tensor_shape: [100, 7]
    enable --output_nms_with_dynamic_tensor:
        output_tensor_shape: [N, 7]

  -onwa, --output_nms_with_argmax
    Apply argmax to class scores dimension in NonMaxSuppression and shrink
    scores tensor from [B, C, N] to [B, 1, N].

  -snms {v4,v5}, --switch_nms_version {v4,v5}
    Switch the NMS version to V4 or V5 to convert.
    e.g.
    NonMaxSuppressionV4(default): --switch_nms_version v4
    NonMaxSuppressionV5: --switch_nms_version v5

  -k KEEP_NCW_OR_NCHW_OR_NCDHW_INPUT_NAMES [KEEP_NCW_OR_NCHW_OR_NCDHW_INPUT_NAMES ...], \
      --keep_ncw_or_nchw_or_ncdhw_input_names KEEP_NCW_OR_NCHW_OR_NCDHW_INPUT_NAMES \
          [KEEP_NCW_OR_NCHW_OR_NCDHW_INPUT_NAMES ...]
    Holds the NCW or NCHW or NCDHW of the input shape for the specified INPUT OP names.
    If a nonexistent INPUT OP name is specified, it is ignored.
    Valid only for 3D, 4D and 5D input tensors.
    e.g. --keep_ncw_or_nchw_or_ncdhw_input_names "input0" "input1" "input2"

  -kt KEEP_NWC_OR_NHWC_OR_NDHWC_INPUT_NAMES [KEEP_NWC_OR_NHWC_OR_NDHWC_INPUT_NAMES ...], \
      --keep_nwc_or_nhwc_or_ndhwc_input_names KEEP_NWC_OR_NHWC_OR_NDHWC_INPUT_NAMES \
          [KEEP_NWC_OR_NHWC_OR_NDHWC_INPUT_NAMES ...]
    Holds the NWC or NHWC or NDHWC of the input shape for the specified INPUT OP names.
    If a nonexistent INPUT OP name is specified, it is ignored.
    If the input OP name is the same as the input OP name specified
    in the keep_ncw_or_nchw_or_ncdhw_input_names option, it is ignored.
    Valid only for 3D, 4D and 5D input tensors.
    e.g. --keep_nwc_or_nhwc_or_ndhwc_input_names "input0" "input1" "input2"

  -kat KEEP_SHAPE_ABSOLUTELY_INPUT_NAMES [KEEP_SHAPE_ABSOLUTELY_INPUT_NAMES ...], \
      --keep_shape_absolutely_input_names KEEP_SHAPE_ABSOLUTELY_INPUT_NAMES \
        [KEEP_SHAPE_ABSOLUTELY_INPUT_NAMES ...]
    Name of the INPUT that unconditionally maintains its shape.
    If a nonexistent INPUT OP name is specified, it is ignored.
    e.g. --keep_shape_absolutely_input_names "input0" "input1" "input2"

  -inimc INPUT_NAMES [INPUT_NAMES ...], \
      --input_names_to_interrupt_model_conversion INPUT_NAMES [INPUT_NAMES ...]
    Input names of ONNX that interrupt model conversion.
    Interrupts model transformation at the specified input name and inputs the
    model partitioned into subgraphs.
    e.g. --input_names_to_interrupt_model_conversion "input0" "input1" "input2"

  -onimc OUTPUT_NAMES [OUTPUT_NAMES ...], \
      --output_names_to_interrupt_model_conversion OUTPUT_NAMES [OUTPUT_NAMES ...]
    Output names of ONNX that interrupt model conversion.
    Interrupts model transformation at the specified output name and outputs the
    model partitioned into subgraphs.
    e.g. --output_names_to_interrupt_model_conversion "output0" "output1" "output2"

  -easm, --enable_auto_split_model
    Force auto split regardless of the ONNX file size.
    Uses --auto_split_max_size as the target partition size.

  -asms AUTO_SPLIT_MAX_SIZE, --auto_split_max_size AUTO_SPLIT_MAX_SIZE
    Target maximum size per partition when auto-split is triggered or forced.
    Supported units: KB, MB, GB (e.g. 900MB, 1GB, 1536KB).
    Bare numbers are treated as MB.
    When specified, this value is also used as the target size for --auto_split_tflite_by_size.
    Default: 1GB

  -dgc, --disable_group_convolution
    Disable GroupConvolution and replace it with SeparableConvolution for
    output to saved_model format.

  -eatfp16, --enable_accumulation_type_float16 ENABLE_ACCUMULATION_TYPE_FLOAT16
    Hint for XNNPACK fp16 inference on float16 tflite model.
    XNNPACK float16 inference on certain ARM64 cores is 2x faster.
    Float16 inference doubling on devices with ARM64 ARMv8.2 or higher instruction set.
    See: https://github.com/PINTO0309/onnx2tf/pull/553

  -ebu, --enable_batchmatmul_unfold
    BatchMatMul is separated batch by batch to generate a primitive MatMul.

  -eru, --enable_rnn_unroll
    Instead of increasing inference speed by expanding all symbolic loops of
    the RNN (LSTM, GRU, RNN), RAM consumption will increase because all tensors
    are expanded and embedded in the model.
    https://keras.io/api/layers/recurrent_layers/

  -dsft, --disable_suppression_flextranspose
    Disables FlexTranspose generation suppression.

  -nodaftc, --number_of_dimensions_after_flextranspose_compression
    Number of Transpose OP dimensions generated after avoiding FlexTranspose generation.
    Also suppress the creation of the Transpose itself by specifying 2.
    Default: 6

  -dsfs, --disable_suppression_flexstridedslice
    Disables FlexStridedSlice generation suppression.

  -dsm, --disable_strict_mode
    If specified, the conversion speed is greatly accelerated because the strict accuracy
    correction process is skipped, but the frequency of transposition errors increases
    and accuracy errors are more likely to occur. Strict mode is enabled by default.
    As of 2023.05.07, this is a work in progress and is an experimental feature.
    Therefore, only some OPs are converted in strict mode for accuracy correction.

  -nodafsc, --number_of_dimensions_after_flexstridedslice_compression
    Number of StridedSlice OP dimensions generated after avoiding FlexStridedSlice generation.
    Default: 5

  -ofgd, --optimization_for_gpu_delegate
    Replace operations that do not support gpu delegate with those
    that do as much as possible.

  -rari64, --replace_argmax_to_reducemax_and_indices_is_int64
    Replace ArgMax with a ReduceMax. The returned indices are int64.
    Only one of replace_argmax_to_reducemax_and_indices_is_int64
    and replace_argmax_to_reducemax_and_indices_is_float32
    and replace_argmax_to_fused_argmax_and_indices_is_int64
    and replace_argmax_to_fused_argmax_and_indices_is_float32 can be specified.

  -rarf32, --replace_argmax_to_reducemax_and_indices_is_float32
    Replace ArgMax with a ReduceMax. The returned indices are float32.
    Only one of replace_argmax_to_reducemax_and_indices_is_int64
    and replace_argmax_to_reducemax_and_indices_is_float32
    and replace_argmax_to_fused_argmax_and_indices_is_int64
    and replace_argmax_to_fused_argmax_and_indices_is_float32 can be specified.

  -rafi64, --replace_argmax_to_fused_argmax_and_indices_is_int64
    Replace ArgMax with a Fused_ArgMax. The returned indices are int64.
    It improves inference speed at the cost of a small sacrifice in accuracy.
    See. https://github.com/tensorflow/models/tree/master/official/projects/edgetpu/vision#argmax-fusion-to-improve-segmentation-model-latency
    Currently, only 4D tensors are supported.
    Only one of replace_argmax_to_reducemax_and_indices_is_int64
    and replace_argmax_to_reducemax_and_indices_is_float32
    and replace_argmax_to_fused_argmax_and_indices_is_int64
    and replace_argmax_to_fused_argmax_and_indices_is_float32 can be specified.

  -raff32, --replace_argmax_to_fused_argmax_and_indices_is_float32
    Replace ArgMax with a Fused_ArgMax. The returned indices are float32.
    It improves inference speed at the cost of a small sacrifice in accuracy.
    See. https://github.com/tensorflow/models/tree/master/official/projects/edgetpu/vision#argmax-fusion-to-improve-segmentation-model-latency
    Currently, only 4D tensors are supported.
    Only one of replace_argmax_to_reducemax_and_indices_is_int64
    and replace_argmax_to_reducemax_and_indices_is_float32
    and replace_argmax_to_fused_argmax_and_indices_is_int64
    and replace_argmax_to_fused_argmax_and_indices_is_float32 can be specified.

  -fasr FUSED_ARGMAX_SCALE_RATIO, --fused_argmax_scale_ratio FUSED_ARGMAX_SCALE_RATIO
    For Fused ArgMax.
    Scale ratio when generating Fused ArgMax.
    0.0 < fused_argmax_scale_ratio <= 1.0
    Default: 0.5

  -rtpo, --replace_to_pseudo_operators
    Replace list of operators to pseudo operators.
    Full name of the target operators should be given.
    Currently supported operators :
    Asin, Acos, Atan, Abs, PReLU, LeakyReLU, Power, GatherND, Neg, HardSwish, Erf, GeLU, MatMulInteger

  -me, --mvn_epsilon
    For MeanVarianceNormalization.
    The number to be added to the variance to avoid division by zero
    when normalizing the value.
    (input_tensor - mean) / tf.sqrt(variance + mvn_epsilon)
    Default: 0.0000000001

  -prf PARAM_REPLACEMENT_FILE, --param_replacement_file PARAM_REPLACEMENT_FILE
    Parameter replacement file path. (.json)

  -cgdc, --check_gpu_delegate_compatibility
    Run TFLite ModelAnalyzer on the generated Float16 tflite model
    to check if the model can be supported by GPU Delegate.
    e.g.
    """
    === TFLite ModelAnalyzer ===

    Your TFLite model has '1' subgraph(s). In the subgraph description below,
    T# represents the Tensor numbers. For example, in Subgraph#0, the RESHAPE op takes
    tensor #0 and tensor #6 as input and produces tensor #7 as output.

    Subgraph#0 main(T#0) -> [T#17]
      Op#0 RESHAPE(T#0, T#6[2, 8, 8, 3, 2, ...]) -> [T#7]
      Op#1 SPLIT(T#5[0], T#7) -> [T#8, T#9]
      Op#2 RESHAPE(T#8, T#1[8, 8, 3, 2, 2]) -> [T#10]
      Op#3 TRANSPOSE(T#10, T#4[0, 3, 1, 4, 2]) -> [T#11]
      Op#4 RESHAPE(T#11, T#2[1, 8, 2, 8, 2, ...]) -> [T#12]
      Op#5 RESHAPE(T#9, T#1[8, 8, 3, 2, 2]) -> [T#13]
      Op#6 TRANSPOSE(T#13, T#4[0, 3, 1, 4, 2]) -> [T#14]
      Op#7 RESHAPE(T#14, T#2[1, 8, 2, 8, 2, ...]) -> [T#15]
      Op#8 CONCATENATION(T#12, T#15) -> [T#16]
      Op#9 RESHAPE(T#16, T#3[2, 16, 16, 3]) -> [T#17]

    Tensors of Subgraph#0
      T#0(inputs_0) shape:[2, 8, 8, 12], type:FLOAT32
      T#1(model/tf.compat.v1.squeeze_2/Squeeze) shape:[5], type:INT32 RO 20 bytes, data:[8, 8, 3, 2, 2]
      T#2(model/tf.expand_dims_1/ExpandDims) shape:[6], type:INT32 RO 24 bytes, data:[1, 8, 2, 8, 2, ...]
      T#3(model/tf.reshape_1/Reshape/shape) shape:[4], type:INT32 RO 16 bytes, data:[2, 16, 16, 3]
      T#4(model/tf.compat.v1.transpose/transpose/perm) shape:[5], type:INT32 RO 20 bytes, data:[0, 3, 1, 4, 2]
      T#5(model/tf.concat/concat/axis) shape:[], type:INT32 RO 4 bytes, data:[0]
      T#6(model/tf.reshape/Reshape/shape) shape:[6], type:INT32 RO 24 bytes, data:[2, 8, 8, 3, 2, ...]
      T#7(model/tf.reshape/Reshape) shape:[2, 8, 8, 3, 2, 2], type:FLOAT32
      T#8(model/tf.split/split) shape:[1, 8, 8, 3, 2, 2], type:FLOAT32
      T#9(model/tf.split/split1) shape:[1, 8, 8, 3, 2, 2], type:FLOAT32
      T#10(model/tf.compat.v1.squeeze_1/Squeeze) shape:[8, 8, 3, 2, 2], type:FLOAT32
      T#11(model/tf.compat.v1.transpose/transpose) shape:[8, 2, 8, 2, 3], type:FLOAT32
      T#12(model/tf.expand_dims/ExpandDims) shape:[1, 8, 2, 8, 2, 3], type:FLOAT32
      T#13(model/tf.compat.v1.squeeze_2/Squeeze1) shape:[8, 8, 3, 2, 2], type:FLOAT32
      T#14(model/tf.compat.v1.transpose_1/transpose) shape:[8, 2, 8, 2, 3], type:FLOAT32
      T#15(model/tf.expand_dims_1/ExpandDims1) shape:[1, 8, 2, 8, 2, 3], type:FLOAT32
      T#16(model/tf.concat/concat) shape:[2, 8, 2, 8, 2, 3], type:FLOAT32
      T#17(Identity) shape:[2, 16, 16, 3], type:FLOAT32

    Your model looks compatibile with GPU delegate with TFLite runtime version 2.10.0.
    But it doesn't guarantee that your model works well with GPU delegate.
    There could be some runtime incompatibililty happen.
    ---------------------------------------------------------------
                  Model size:       2988 bytes
        Non-data buffer size:       2757 bytes (92.27 %)
      Total data buffer size:        231 bytes (07.73 %)
        (Zero value buffers):          4 bytes (00.13 %)

    * Buffers of TFLite model are mostly used for constant tensors.
      And zero value buffers are buffers filled with zeros.
      Non-data buffers area are used to store operators, subgraphs and etc.
      You can find more details from https://github.com/google-ai-edge/LiteRT/blob/v2.1.2/tflite/converter/schema/schema.fbs
    """

  -coto, --check_onnx_tf_outputs_elementwise_close
    Returns "Matches" if the output of onnx and the output of TF are
    within acceptable proximity element by element.
    Returns "Unmatched" if the output of onnx and the output of TF are
    not within acceptable proximity element by element.
    If the output of onnx is 1D, it returns "Skipped" and skips the comparison
    between the output of onnx and that of TF. This is because when undefined
    dimensions are present, a situation often arises where very large index
    values are compared, causing OutOfMemory.
    Only the output content of the models final output OP is checked.

  -cotof, --check_onnx_tf_outputs_elementwise_close_full
    Returns "Matches" if the output of onnx and the output of TF are
    within acceptable proximity element by element.
    Check the output of all OPs in sequence from the beginning,
    including all but the final output OP of the model.
    Returns "Unmatched" if the output of onnx and the output of TF are
    not within acceptable proximity element by element.
    If the output of onnx is 1D, it returns "Skipped" and skips the comparison
    between the output of onnx and that of TF. This is because when undefined
    dimensions are present, a situation often arises where very large index
    values are compared, causing OutOfMemory.
    It is very time consuming because it performs as many inferences as
    there are operations.

  -coton, --check_onnx_tf_outputs_sample_data_normalization
    norm: Validate using random data normalized to the range 0.0 to 1.0
    denorm: Validate using random data in the range 0.0 to 255.0
    If there is a normalization layer at the model's entry point, or
    if the model was trained on denormalized data, "denorm" must be specified.
    Default: "norm"

  -cotor CHECK_ONNX_TF_OUTPUTS_ELEMENTWISE_CLOSE_RTOL,\
    --check_onnx_tf_outputs_elementwise_close_rtol CHECK_ONNX_TF_OUTPUTS_ELEMENTWISE_CLOSE_RTOL
    The relative tolerance parameter.
    Default: 0.0

  -cotoa CHECK_ONNX_TF_OUTPUTS_ELEMENTWISE_CLOSE_ATOL,\
    --check_onnx_tf_outputs_elementwise_close_atol CHECK_ONNX_TF_OUTPUTS_ELEMENTWISE_CLOSE_ATOL
    The absolute tolerance parameter.
    Default: 1e-4

  -tdnp TEST_DATA_NHWC_PATH, --test_data_nhwc_path TEST_DATA_NHWC_PATH
    Path to a numpy file (.npy) containing custom test data in NHWC format.
    This is used for test inference and validation when check_onnx_tf_outputs options are enabled.
    If not specified, the tool will attempt to download sample data from the internet
    when the input is a 4D RGB image tensor.
    The numpy array should have shape [batch_size, height, width, 3] with values
    normalized to the range [0, 1].
    This option is useful for offline environments or when you want to use
    specific test data for validation.
    For models with multiple inputs, the same test array is reused for each eligible input
    after per-input resize/layout conversion.
    Unlike -cind, this option is not used for INT8 calibration and does not accept mean/std.

  -agj, --auto_generate_json
    Automatically generates a parameter replacement JSON file that achieves minimal error
    when converting the model. This option explores various parameter combinations to find
    the best settings that result in successful conversion and highest accuracy.
    The search stops when the final output OP accuracy check shows "Matches".
    When used together with -cotof, the generated JSON is used to re-evaluate accuracy.
    WARNING: This option performs an exhaustive search to find the optimal conversion patterns,
    which can take a very long time depending on the model complexity.

  -agje, --auto_generate_json_on_error
    Attempts to generate a parameter replacement JSON when conversion fails or when accuracy
    validation finds errors greater than 1e-2. Useful for quickly capturing fixes during
    -cotof runs. Disabled by default to avoid unexpected file generation.

  -dms, --disable_model_save
    Does not save the converted model. For CIs RAM savings.

  -n, --non_verbose
    Shorthand to specify a verbosity of "error".

  -v, --verbosity
    Change the level of information printed.
    Values are "debug", "info", "warn", and "error".
    Default: "debug" (for backwards compatability)

In-script Usage

Click to expand
>>> from onnx2tf import convert
>>> help(convert)

Help on function convert in module onnx2tf:

convert(
  input_onnx_file_path: Union[str, NoneType] = '',
  onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
  output_folder_path: Union[str, NoneType] = 'saved_model',
  output_signaturedefs: Optional[bool] = False,
  output_h5: Optional[bool] = False,
  output_keras_v3: Optional[bool] = False,
  output_tfv1_pb: Optional[bool] = False,
  output_weights: Optional[bool] = False,
  copy_onnx_input_output_names_to_tflite: Optional[bool] = False,
  output_integer_quantized_tflite: Optional[bool] = False,
  tflite_backend: Optional[str] = 'tf_converter',
  quant_norm_mean: Optional[str] = '[[[[0.485, 0.456, 0.406]]]]',
  quant_norm_std: Optional[str] = '[[[[0.229, 0.224, 0.225]]]]',
  quant_type: Optional[str] = 'per-channel',
  custom_input_op_name_np_data_path: Optional[List] = None,
  input_quant_dtype: Optional[str] = 'int8',
  output_quant_dtype: Optional[str] = 'int8',
  not_use_onnxsim: Optional[bool] = False,
  not_use_opname_auto_generate: Optional[bool] = False,
  batch_size: Union[int, NoneType] = None,
  overwrite_input_shape: Union[List[str], NoneType] = None,
  shape_hints: Union[List[str], NoneType] = None,
  value_hints: Union[List[str], NoneType] = None,
  no_large_tensor: Optional[bool] = False,
  output_nms_with_dynamic_tensor: Optional[bool] = False,
  output_nms_with_argmax: Optional[bool] = False,
  switch_nms_version: Optional[str] = 'v4',
  keep_ncw_or_nchw_or_ncdhw_input_names: Union[List[str], NoneType] = None,
  keep_nwc_or_nhwc_or_ndhwc_input_names: Union[List[str], NoneType] = None,
  keep_shape_absolutely_input_names: Optional[List[str]] = None,
  input_names_to_interrupt_model_conversion: Union[List[str], NoneType] = None,
  output_names_to_interrupt_model_conversion: Union[List[str], NoneType] = None,
  enable_auto_split_model: Optional[bool] = False,
  auto_split_max_size: Union[Any, NoneType] = None,
  auto_split_max_size_mb: Union[int, NoneType] = None,
  disable_group_convolution: Union[bool, NoneType] = False,
  enable_batchmatmul_unfold: Optional[bool] = False,
  enable_rnn_unroll: Optional[bool] = False,
  disable_suppression_flextranspose: Optional[bool] = False,
  number_of_dimensions_after_flextranspose_compression: Optional[int] = 6,
  disable_suppression_flexstridedslice: Optional[bool] = False,
  disable_strict_mode: Optional[bool] = False,
  number_of_dimensions_after_flexstridedslice_compression: Optional[int] = 5,
  optimization_for_gpu_delegate: Optional[bool] = False,
  replace_argmax_to_reducemax_and_indices_is_int64: Union[bool, NoneType] = False,
  replace_argmax_to_reducemax_and_indices_is_float32: Union[bool, NoneType] = False,
  replace_argmax_to_fused_argmax_and_indices_is_int64: Union[bool, NoneType] = False,
  replace_argmax_to_fused_argmax_and_indices_is_float32: Union[bool, NoneType] = False,
  fused_argmax_scale_ratio: Union[float, NoneType] = 0.5,
  replace_to_pseudo_operators: List[str] = None,
  mvn_epsilon: Union[float, NoneType] = 0.0000000001,
  param_replacement_file: Optional[str] = '',
  auto_generate_json: Optional[bool] = False,
  auto_generate_json_on_error: Optional[bool] = False,
  check_gpu_delegate_compatibility: Optional[bool] = False,
  check_onnx_tf_outputs_elementwise_close: Optional[bool] = False,
  check_onnx_tf_outputs_elementwise_close_full: Optional[bool] = False,
  check_onnx_tf_outputs_sample_data_normalization: Optional[str] = 'norm',
  check_onnx_tf_outputs_elementwise_close_rtol: Optional[float] = 0.0,
  check_onnx_tf_outputs_elementwise_close_atol: Optional[float] = 1e-4,
  test_data_nhwc_path: Union[str, NoneType] = None,
  disable_model_save: Union[bool, NoneType] = False,
  non_verbose: Union[bool, NoneType] = False,
  verbosity: Optional[str] = 'debug'
) -> keras.engine.training.Model

    Convert ONNX to TensorFlow models.

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
      Input onnx file path.
      Either input_onnx_file_path or onnx_graph must be specified.

    onnx_graph: Optional[onnx.ModelProto]
      onnx.ModelProto.
      Either input_onnx_file_path or onnx_graph must be specified.
      onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_folder_path: Optional[str]
      Output tensorflow model folder path.
      Default: "saved_model"

    output_signaturedefs: Optional[bool]
      Signature is added to the output for serving or for conversion
      to other model formats. However, this can significantly reduce the speed
      of model conversion and significant increase the size of the model.

    output_h5: Optional[bool]
      Output model in Keras H5 format.

    output_keras_v3: Optional[bool]
      Output model in Keras (keras_v3) format.

    output_tfv1_pb: Optional[bool]
      Output model in TF v1 (.pb) format.

    output_weights: Optional[bool]
      Output weights in hdf5 format.

    copy_onnx_input_output_names_to_tflite: Optional[bool]
      Copy the input/output OP name of ONNX to the input/output OP name of tflite.
      Due to Tensorflow internal operating specifications,
      the input/output order of ONNX does not necessarily match
      the input/output order of tflite.
      Be sure to check that the input/output OP names in the generated
      tflite file have been converted as expected.
      Also, this option generates a huge JSON file as a temporary file for processing.
      Therefore, it is strongly discouraged to use it on large models of hundreds
      of megabytes or more.

    output_integer_quantized_tflite: Optional[bool]
      Output of integer quantized tflite.

    tflite_backend: Optional[str]
      TFLite generation backend.
      "tf_converter"(default): Use TensorFlow Lite Converter.
      "flatbuffer_direct": Experimental direct FlatBuffer builder path.
      Note: "flatbuffer_direct" supports a limited builtin OP set,
      FP32/FP16 export, limited dynamic-range quantization,
      limited integer quantization, and limited int16-activation variants.

    quant_norm_mean: Optional[str]
        Normalized average value during quantization.
        Only valid when the "-cind" option is not used.
        Default: "[[[[0.485, 0.456, 0.406]]]]"

    quant_norm_std: Optional[str]
        Normalized standard deviation during quantization.
        Only valid when the "-cind" option is not used.
        Default: "[[[[0.229, 0.224, 0.225]]]]"

    quant_type: Optional[str]
      Selects whether "per-channel" or "per-tensor" quantization is used.
      Default: "per-channel"

    custom_input_op_name_np_data_path: Optional[List]
      --custom_input_op_name_np_data_path INPUT_NAME NUMPY_FILE_PATH MEAN STD
      Input name of OP and path of data file (Numpy) for custom input for -cotof or -oiqt,
      and mean (optional) and std (optional).

      <Usage in -cotof>
        When using -cotof, custom input defined by the user, instead of dummy data, is used.
        In this case, mean and std are omitted from the input.
        -cind {input_op_name} {numpy_file_path}
        e.g. -cind onnx::Equal_0 test_cind/x_1.npy -cind onnx::Add_1 test_cind/x_2.npy -cotof
        The input_op_name must be the same as in ONNX,
        and it may not work if the input format is different between ONNX and TF.

      <Usage in -oiqt>
        INPUT Name of OP and path of calibration data file (Numpy) for quantization
        and mean and std.
        The specification can be omitted only when the input OP is a single 4D tensor image data.
        If omitted, it is automatically calibrated using 20 normalized MS-COCO images.
        The type of the input OP must be Float32.
        Data for calibration must be pre-normalized to a range of 0 to 1.
        -cind {input_op_name} {numpy_file_path} {mean} {std}
        Numpy file paths must be specified the same number of times as the number of input OPs.
        Normalize the value of the input OP based on the tensor specified in mean and std.
        (input_value - mean) / std
        Tensors in Numpy file format must be in dimension order after conversion to TF.
        Note that this is intended for deployment on low-resource devices,
        so the batch size is limited to 1 only.
        e.g.
        The example below shows a case where there are three input OPs.
        Assume input0 is 128x128 RGB image data.
        In addition, input0 should be a value that has been divided by 255
        in the preprocessing and normalized to a range between 0 and 1.
        input1 and input2 assume the input of something that is not an image.
        Because input1 and input2 assume something that is not an image,
        the divisor is not 255 when normalizing from 0 to 1.
        "n" is the number of calibration data.

        ONNX INPUT shapes:
          input0: [n,3,128,128]
            mean: [1,3,1,1] -> [[[[0.485]],[[0.456]],[[0.406]]]]
            std : [1,3,1,1] -> [[[[0.229]],[[0.224]],[[0.225]]]]
          input1: [n,64,64]
            mean: [1,64] -> [[0.1, ..., 0.64]]
            std : [1,64] -> [[0.05, ..., 0.08]]
          input2: [n,5]
            mean: [1] -> [0.3]
            std : [1] -> [0.07]

        TensorFlow INPUT shapes (Numpy file ndarray shapes):
          input0: [n,128,128,3]
            mean: [1,1,1,3] -> [[[[0.485, 0.456, 0.406]]]]
            std : [1,1,1,3] -> [[[[0.229, 0.224, 0.225]]]]
          input1: [n,64,64]
            mean: [1,64] -> [[0.1, ..., 0.64]]
            std : [1,64] -> [[0.05, ..., 0.08]]
          input2: [n,5]
            mean: [1] -> [0.3]
            std : [1] -> [0.07]

          cind=[
              ["input0","../input0.npy",[[[[0.485, 0.456, 0.406]]]],[[[[0.229, 0.224, 0.225]]]]],
              ["input1","./input1.npy",[0.1, ..., 0.64],[0.05, ..., 0.08]],
              ["input2","input2.npy",[0.3],[0.07]],
          ]

      <Using -cotof and -oiqt at the same time>
        To use -cotof and -oiqt simultaneously,
        you need to enter the Input name of OP, path of data file, mean, and std all together.
        And the data file must be in Float32 format,
        and {input_op_name}, {numpy_file_path}, {mean}, and {std} must all be entered.
        Otherwise, an error will occur during the -oiqt stage.

    input_quant_dtype: Optional[str]
      Input dtypes when doing Full INT8 Quantization.
      "int8"(default) or "uint8" or "float32"

    output_quant_dtype: Optional[str]
      Output dtypes when doing Full INT8 Quantization.
      "int8"(default) or "uint8" or "float32"

    not_use_onnxsim: Optional[bool]
      No optimization by onnx-simplifier is performed.
      If this option is used, the probability of a conversion error is very high.

    not_use_opname_auto_generate: Optional[bool]
      Automatic generation of each OP name in the old format ONNX file
      and assignment of OP name are not performed.

    batch_size: Optional[int]
      Fixes the dynamic batch size to the specified numeric batch size.
      A value of 1 or more must be specified.

    overwrite_input_shape: Optional[List[str]]
      Overwrite the input shape.
      The format is
      ['i1:dim0,dim1,...,dimN', 'i2:dim0,dim1,...,dimN', 'i3:dim0,dim1,...,dimN']
      When there is only one input, for example,
      ['data:1,3,224,224']
      When there are multiple inputs, for example,
      ['data1:1,3,224,224','data2:1,3,112','data3:5']
      A value of 1 or more must be specified.
      Numerical values other than dynamic dimensions are ignored.
      Ignores batch_size if specified at the same time as batch_size.

    shape_hints: Optional[List[str]]
      Shape hints for input tensors containing dynamic dimensions.
      Specify input shapes for test inference with -cotof or -coto.
      Unlike `--overwrite_input_shape`, this operation does not overwrite
      the ONNX input shape with a static shape.
      The format is
      ['i1:dim0,...,dimN', 'i2:dim0,...,dimN', 'i3:dim0,...,dimN']
      When there is only one input, for example,
      ['data:1,3,224,224']
      When there are multiple inputs, for example,
      ['data1:1,3,224,224', 'data2:1,3,112', 'data3:5']
      A value of 1 or more must be specified.
      Numerical values other than dynamic dimensions are ignored.

    value_hints: Optional[List[str]]
      Value hints for dummy inference input tensors.
      The format is
      ['input_name_1:value', 'input_name_2:value', '*:default_value']
      "*" applies to all inputs not explicitly specified.
      Values are scalar only.

    no_large_tensor: Optional[bool]
      Suppresses constant bloat caused by Tile OP when optimizing models in onnxsim.
      See: https://github.com/daquexian/onnx-simplifier/issues/178

    output_nms_with_dynamic_tensor: Optional[bool]
      The number of bounding boxes in the NMS output results is
      not fixed at the maximum number of max_output_boxes_per_class,
      but rather at the smallest possible number of dynamic tensors.
      If this option is disabled, NMS output is padded to the number
      set in the max_output_boxes_per_class attribute.
      e.g.
      disable --output_nms_with_dynamic_tensor:
          output_tensor_shape: [100, 7]
      enable --output_nms_with_dynamic_tensor:
          output_tensor_shape: [N, 7]

    output_nms_with_argmax: Optional[bool]
      Apply argmax over scores class dimension in NonMaxSuppression to
      shrink scores from [B, C, N] to [B, 1, N].

    switch_nms_version {v4,v5}
      Switch the NMS version to V4 or V5 to convert.
      e.g.
      NonMaxSuppressionV4(default): switch_nms_version="v4"
      NonMaxSuppressionV5: switch_nms_version="v5"

    keep_ncw_or_nchw_or_ncdhw_input_names: Optional[List[str]]
      Holds the NCW or NCHW or NCDHW of the input shape for the specified INPUT OP names.
      If a nonexistent INPUT OP name is specified, it is ignored.
      Valid only for 3D, 4D and 5D input tensors.
      e.g.
      keep_ncw_or_nchw_or_ncdhw_input_names=['input0','input1','input2']

    keep_nwc_or_nhwc_or_ndhwc_input_names: Optional[List[str]]
      Holds the NWC or NHWC or NDHWC of the input shape for the specified INPUT OP names.
      If a nonexistent INPUT OP name is specified, it is ignored.
      If the input OP name is the same as the input OP name specified
      in the keep_ncw_or_nchw_or_ncdhw_input_names option, it is ignored.
      Valid only for 3D, 4D and 5D input tensors.
      e.g.
      keep_nwc_or_nhwc_or_ndhwc_input_names=['input0','input1','input2']

    keep_shape_absolutely_input_names: Optional[List[str]]
      Name of the INPUT that unconditionally maintains its shape.
      If a nonexistent INPUT OP name is specified, it is ignored.
      e.g.
      keep_shape_absolutely_input_names=['input0','input1','input2']

    input_names_to_interrupt_model_conversion: Optional[List[str]]
      Input names of ONNX that interrupt model conversion.
      Interrupts model transformation at the specified input name
      and inputs the model partitioned into subgraphs.
      e.g.
      input_names_to_interrupt_model_conversion=['input0','input1','input2']

    output_names_to_interrupt_model_conversion: Optional[List[str]]
      Output names of ONNX that interrupt model conversion.
      Interrupts model transformation at the specified output name
      and outputs the model partitioned into subgraphs.
      e.g.
      output_names_to_interrupt_model_conversion=['output0','output1','output2']

    enable_auto_split_model: Optional[bool]
      Force auto split regardless of the ONNX file size.
      Uses auto_split_max_size as the target partition size.
      Short option: -easm
      Default: False

    auto_split_max_size: Optional[Any]
      Target maximum size per partition.
      Supports values such as "512KB", "900MB", and "1.5GB".
      Bare numeric values are treated as MB.
      Used when auto-split is triggered or forced.
      When specified, also used as the split target when auto_split_tflite_by_size=True.
      Default: "1GB"

    auto_split_max_size_mb: Optional[int]
      [Deprecated] Legacy alias of auto_split_max_size in MB.

    disable_group_convolution: Optional[bool]
      Disable GroupConvolution and replace it with SeparableConvolution for
      output to saved_model format.

    enable_accumulation_type_float16: Optional[bool]
      Hint for XNNPack fp16 inference on float16 tflite model.
      XNNPACK float16 inference on certain ARM64 cores is 2x faster.
      Float16 inference doubling on devices with ARM64 ARMv8.2 or higher instruction set.
      https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/delegates/xnnpack/README.md#floating-point-ieee-fp16-operators

    enable_batchmatmul_unfold: Optional[bool]
      BatchMatMul is separated batch by batch to generate a primitive MatMul.

    enable_rnn_unroll: Optional[bool]
      Instead of increasing inference speed by expanding all symbolic loops of
      the RNN (LSTM, GRU, RNN), RAM consumption will increase because all tensors
      are expanded and embedded in the model.
      https://keras.io/api/layers/recurrent_layers/

    disable_suppression_flextranspose: Optional[bool]
      Disables FlexTranspose generation suppression.

    number_of_dimensions_after_flextranspose_compression: Optional[int]
      Number of Transpose OP dimensions generated after avoiding FlexTranspose generation.
      Also suppress the creation of the Transpose itself by specifying 2.
      Default: 6

    disable_suppression_flexstridedslice: Optional[bool]
      Disables FlexStridedSlice generation suppression.

    disable_strict_mode: Optional[bool]
      If specified, the conversion speed is greatly accelerated because the strict accuracy
      correction process is skipped, but the frequency of transposition errors increases
      and accuracy errors are more likely to occur. Strict mode is enabled by default.
      As of 2023.05.07, this is a work in progress and is an experimental feature.
      Therefore, only some OPs are converted in strict mode for accuracy correction.

    number_of_dimensions_after_flexstridedslice_compression: Optional[int]
      Number of StridedSlice OP dimensions generated after avoiding FlexStridedSlice generation.
      Default: 5

    optimization_for_gpu_delegate: Optional[bool]
      Replace operations that do not support gpu delegate with those
      that do as much as possible.

    replace_argmax_to_reducemax_and_indices_is_int64: Optional[bool]
      Replace ArgMax with a ReduceMax. The returned indices are int64.
      Only one of replace_argmax_to_reducemax_and_indices_is_int64 and
      replace_argmax_to_reducemax_and_indices_is_float32 and
      replace_argmax_to_fused_argmax_and_indices_is_int64 and
      replace_argmax_to_fused_argmax_and_indices_is_float32 can be specified.
      Default: False

    replace_argmax_to_reducemax_and_indices_is_float32: Optional[bool]
      Replace ArgMax with a ReduceMax. The returned indices are float32.
      Only one of replace_argmax_to_reducemax_and_indices_is_int64 and
      replace_argmax_to_reducemax_and_indices_is_float32 and
      replace_argmax_to_fused_argmax_and_indices_is_int64 and
      replace_argmax_to_fused_argmax_and_indices_is_float32 can be specified.
      Default: False

    replace_argmax_to_fused_argmax_and_indices_is_int64: Optional[bool]
      Replace ArgMax with a ReduceMax. The returned indices are int64.
      It improves inference speed at the cost of a small sacrifice in accuracy.
      See. https://github.com/tensorflow/models/tree/master/official/projects/edgetpu/vision#argmax-fusion-to-improve-segmentation-model-latency
      Currently, only 4D tensors are supported.
      Only one of replace_argmax_to_reducemax_and_indices_is_int64 and
      replace_argmax_to_reducemax_and_indices_is_float32 and
      replace_argmax_to_fused_argmax_and_indices_is_int64 and
      replace_argmax_to_fused_argmax_and_indices_is_float32 can be specified.
      Default: False

    replace_argmax_to_fused_argmax_and_indices_is_float32: Optional[bool]
      Replace ArgMax with a ReduceMax. The returned indices are float32.
      It improves inference speed at the cost of a small sacrifice in accuracy.
      See. https://github.com/tensorflow/models/tree/master/official/projects/edgetpu/vision#argmax-fusion-to-improve-segmentation-model-latency
      Currently, only 4D tensors are supported.
      Only one of replace_argmax_to_reducemax_and_indices_is_int64 and
      replace_argmax_to_reducemax_and_indices_is_float32 and
      replace_argmax_to_fused_argmax_and_indices_is_int64 and
      replace_argmax_to_fused_argmax_and_indices_is_float32 can be specified.
      Default: False

    fused_argmax_scale_ratio: Optional[float]
      For Fused ArgMax.
      Scale ratio when generating Fused ArgMax.
      0.0 < fused_argmax_scale_ratio <= 1.0
      Default: 0.5

    replace_to_pseudo_operators: List[str]
      Replace list of operators to pseudo operators.
      Full name of the target operators should be given.
      Currently supported operators :
      Asin, Acos, Atan, Abs, PReLU, LeakyReLU, Power, GatherND, Neg, HardSwish, Erf, GeLU, MatMulInteger

    mvn_epsilon: Optional[float]
      For MeanVarianceNormalization.
      The number to be added to the variance to avoid division by zero
      when normalizing the value.
      (input_tensor - mean) / tf.sqrt(variance + mvn_epsilon)
      Default: 0.0000000001

    param_replacement_file: Optional[str]
      Parameter replacement file path. (.json)

    auto_generate_json: Optional[bool]
      Automatically generates a parameter replacement JSON file that achieves minimal error
      when converting the model. This option explores various parameter combinations to find
      the best settings that result in successful conversion and highest accuracy.
      The search stops when the final output OP accuracy check shows "Matches".
      When used together with check_onnx_tf_outputs_elementwise_close_full,
      the generated JSON is used to re-evaluate accuracy.
      Default: False

    auto_generate_json_on_error: Optional[bool]
      When conversion fails or accuracy validation detects errors greater than 1e-2,
      attempts to generate a parameter replacement JSON as a best-effort fix.
      Default: False

    check_gpu_delegate_compatibility: Optional[bool]
      Run TFLite ModelAnalyzer on the generated Float16 tflite model
      to check if the model can be supported by GPU Delegate.
      e.g.
      """
      === TFLite ModelAnalyzer ===

      Your TFLite model has '1' subgraph(s). In the subgraph description below,
      T# represents the Tensor numbers. For example, in Subgraph#0, the RESHAPE op takes
      tensor #0 and tensor #6 as input and produces tensor #7 as output.

      Subgraph#0 main(T#0) -> [T#17]
        Op#0 RESHAPE(T#0, T#6[2, 8, 8, 3, 2, ...]) -> [T#7]
        Op#1 SPLIT(T#5[0], T#7) -> [T#8, T#9]
        Op#2 RESHAPE(T#8, T#1[8, 8, 3, 2, 2]) -> [T#10]
        Op#3 TRANSPOSE(T#10, T#4[0, 3, 1, 4, 2]) -> [T#11]
        Op#4 RESHAPE(T#11, T#2[1, 8, 2, 8, 2, ...]) -> [T#12]
        Op#5 RESHAPE(T#9, T#1[8, 8, 3, 2, 2]) -> [T#13]
        Op#6 TRANSPOSE(T#13, T#4[0, 3, 1, 4, 2]) -> [T#14]
        Op#7 RESHAPE(T#14, T#2[1, 8, 2, 8, 2, ...]) -> [T#15]
        Op#8 CONCATENATION(T#12, T#15) -> [T#16]
        Op#9 RESHAPE(T#16, T#3[2, 16, 16, 3]) -> [T#17]

      Tensors of Subgraph#0
        T#0(inputs_0) shape:[2, 8, 8, 12], type:FLOAT32
        T#1(model/tf.compat.v1.squeeze_2/Squeeze) shape:[5], type:INT32 RO 20 bytes, data:[8, 8, 3, 2, 2]
        T#2(model/tf.expand_dims_1/ExpandDims) shape:[6], type:INT32 RO 24 bytes, data:[1, 8, 2, 8, 2, ...]
        T#3(model/tf.reshape_1/Reshape/shape) shape:[4], type:INT32 RO 16 bytes, data:[2, 16, 16, 3]
        T#4(model/tf.compat.v1.transpose/transpose/perm) shape:[5], type:INT32 RO 20 bytes, data:[0, 3, 1, 4, 2]
        T#5(model/tf.concat/concat/axis) shape:[], type:INT32 RO 4 bytes, data:[0]
        T#6(model/tf.reshape/Reshape/shape) shape:[6], type:INT32 RO 24 bytes, data:[2, 8, 8, 3, 2, ...]
        T#7(model/tf.reshape/Reshape) shape:[2, 8, 8, 3, 2, 2], type:FLOAT32
        T#8(model/tf.split/split) shape:[1, 8, 8, 3, 2, 2], type:FLOAT32
        T#9(model/tf.split/split1) shape:[1, 8, 8, 3, 2, 2], type:FLOAT32
        T#10(model/tf.compat.v1.squeeze_1/Squeeze) shape:[8, 8, 3, 2, 2], type:FLOAT32
        T#11(model/tf.compat.v1.transpose/transpose) shape:[8, 2, 8, 2, 3], type:FLOAT32
        T#12(model/tf.expand_dims/ExpandDims) shape:[1, 8, 2, 8, 2, 3], type:FLOAT32
        T#13(model/tf.compat.v1.squeeze_2/Squeeze1) shape:[8, 8, 3, 2, 2], type:FLOAT32
        T#14(model/tf.compat.v1.transpose_1/transpose) shape:[8, 2, 8, 2, 3], type:FLOAT32
        T#15(model/tf.expand_dims_1/ExpandDims1) shape:[1, 8, 2, 8, 2, 3], type:FLOAT32
        T#16(model/tf.concat/concat) shape:[2, 8, 2, 8, 2, 3], type:FLOAT32
        T#17(Identity) shape:[2, 16, 16, 3], type:FLOAT32

      Your model looks compatibile with GPU delegate with TFLite runtime version 2.10.0.
      But it doesn't guarantee that your model works well with GPU delegate.
      There could be some runtime incompatibililty happen.
      ---------------------------------------------------------------
                    Model size:       2988 bytes
          Non-data buffer size:       2757 bytes (92.27 %)
        Total data buffer size:        231 bytes (07.73 %)
          (Zero value buffers):          4 bytes (00.13 %)

      * Buffers of TFLite model are mostly used for constant tensors.
        And zero value buffers are buffers filled with zeros.
        Non-data buffers area are used to store operators, subgraphs and etc.
        You can find more details from https://github.com/google-ai-edge/LiteRT/blob/v2.1.2/tflite/converter/schema/schema.fbs
      """

    check_onnx_tf_outputs_elementwise_close: Optional[bool]
      Returns "Matches" if the output of onnx and the output of TF are
      within acceptable proximity element by element.
      Returns "Unmatched" if the output of onnx and the output of TF are
      not within acceptable proximity element by element.
      If the output of onnx is 1D, it returns "Skipped" and skips the comparison
      between the output of onnx and that of TF. This is because when undefined
      dimensions are present, a situation often arises where very large index
      values are compared, causing OutOfMemory.
      Only the output content of the models final output OP is checked.

    check_onnx_tf_outputs_elementwise_close_full: Optional[bool]
      Returns "Matches" if the output of onnx and the output of TF are
      within acceptable proximity element by element.
      Check the output of all OPs in sequence from the beginning,
      including all but the final output OP of the model.
      Returns "Unmatched" if the output of onnx and the output of TF are
      not within acceptable proximity element by element.
      If the output of onnx is 1D, it returns "Skipped" and skips the comparison
      between the output of onnx and that of TF. This is because when undefined
      dimensions are present, a situation often arises where very large index
      values are compared, causing OutOfMemory.
      It is very time consuming because it performs as many inferences as
      there are operations.

    check_onnx_tf_outputs_sample_data_normalization: Optional[str]
      norm: Validate using random data normalized to the range 0.0 to 1.0
      denorm: Validate using random data in the range 0.0 to 255.0
      If there is a normalization layer at the models entry point, or
      if the model was trained on denormalized data, "denorm" must be specified.
      Default: "norm"

    check_onnx_tf_outputs_elementwise_close_rtol: Optional[float]
      The relative tolerance parameter.
      Default: 0.0

    check_onnx_tf_outputs_elementwise_close_atol: Optional[float]
      The absolute tolerance parameter.
      Default: 1e-4

    test_data_nhwc_path: Optional[str]
      Path to a numpy file (.npy) containing custom test data in NHWC format.
      This is used for test inference and validation when check_onnx_tf_outputs options are enabled.
      If not specified, the tool will attempt to download sample data from the internet
      when the input is a 4D RGB image tensor.
      The numpy array should have shape [batch_size, height, width, 3] with values
      normalized to the range [0, 1].
      This option is useful for offline environments or when you want to use
      specific test data for validation.

    disable_model_save: Optional[bool]
      Does not save the converted model. For CIs RAM savings.
      Default: False

    non_verbose: Optional[bool]
      Shorthand to specify a verbosity of "error".
      Default: False

    verbosity: Optional[str]
      Change the level of information printed.
      Values are "debug", "info", "warn", and "error".
      Default: "debug" (for backwards compatability)

    Returns
    ----------
    model: tf_keras.Model
      Model

Parameter replacement

This tool is used to convert NCW to NWC, NCHW to NHWC, NCDHW to NDHWC, NCDDHW to NDDHWC, NCDDDDDDHW to NDDDDDDHWC. Therefore, as stated in the Key Concepts, the conversion will inevitably break down at some point in the model. You need to look at the entire conversion log to see which OP transpositions are failing and correct them yourself. I dare to explain very little because I know that no matter how much detail I put in the README, you guys will not read it at all. attribute or INPUT constant or INPUT Initializer can be replaced with the specified value.

Click to expand

Starting from v1.3.0, almost all OPs except for some special OPs support pre- and post-transposition by pre_process_transpose and post_process_transpose.

  1. "A conversion error occurs."
  2. "Output results are wrong."

Do not submit an issue that only contains an amount of information that cannot be reproduced.

  • convert option

    --param_replacement_file param_replacement.json
    
    or
    
    -prf param_replacement.json
    
  • param_replacement.json

    See a sample of replacement JSON
    {
      "format_version": 1,
      "operations": [
        {
          "op_name": "StatefulPartitionedCall/Tile_4",
          "param_target": "inputs", # attributes or inputs
          "param_name": "const_fold_opt__677",
          "values": [1,1,17] # Disable parameter transposition or overwrite parameters
        },
        {
          "op_name": "StatefulPartitionedCall/Cast_3",
          "param_target": "attributes", # attributes or inputs
          "param_name": "to",
          "values": 1 # Disable parameter transposition or overwrite "to" parameters
        },
        {
          "op_name": "Resize__697",
          "param_target": "inputs",
          "param_name": "Concat__696:0",
          "values": [26,26] # Replacement of unk__x (Resize OP, sizes height/width parameter)
        },
        {
          "op_name": "Transpose__927",
          "param_target": "attributes",
          "param_name": "perm",
          "values": [0,1,2,3] # Disable parameter transposition or overwrite "perm" parameters
        },
        {
          "op_name": "StatefulPartitionedCall/functional_1/max_unpooling2d_2/Reshape_1",
          "param_target": "inputs",
          "param_name": "const_fold_opt__911",
          "values": [4,131072] # Overwrite "shape" parameters
        },
        {
          "op_name": "Reshape_25",
          "param_target": "outputs",
          "param_name": "onnx::InstanceNormalization_270",
          "post_process_transpose_perm": [0,2,1] # Extrapolate 3D Transpose after Reshape
        },
        {
          "op_name": "Reshape_30",
          "param_target": "outputs",
          "param_name": "onnx::Mul_275",
          "post_process_transpose_perm": [0,2,3,1] # Extrapolate 4D Transpose after Reshape
        },
        {
          "op_name": "flatten_1127",
          "param_target": "inputs",
          "param_name": "dropout0",
          "pre_process_transpose_perm": [0,3,1,2]
        },
        {
          "op_name": "/Slice",
          "param_target": "op",
          "begin": [0,0,1,0],
          "end": [0,0,0,0],
          "end_mask": 15
        },
        {
          "op_name": "/Slice_1",
          "param_target": "op",
          "begin": [0,0,0,0],
          "end": [0,0,39,0],
          "end_mask": 11
        },
        {
          "op_name": "/backbone/backbone.1/Unsqueeze_1",
          "param_target": "op",
          "new_shape": [1,15,15,1]
        }
      ]
    }
    
  • Replacement Supported OPs

    See list of replacement specifications
    No. OP type Remarks
    1 Add 1. "param_target": "inputs"
    pre_process_transpose_perm: Transpose is applied to the tensor before the Add operation with the perm specified as pre-processing.
    2. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the Add operation with the perm specified as post-processing.
    2 Cast
    TypeValuesTypeValues
    float1610int83
    float321int165
    float6411int326
    bool9int647
    uint82
    uint164
    uint3212
    uint6413
    3 Concat 1. "param_target": "attributes"
    axis: Value of axis
    2. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the Concat operation with the perm specified as post-processing.
    4 ConvTranspose ConvTranspose implements special replacements separately ignore all automatic conversions and generate tf.nn.conv1d_transpose or tf.nn.conv2d_transpose or tf.nn.conv3d_transpose directly by specifying all parameters.
    https://www.tensorflow.org/api_docs/python/tf/nn/conv1d_transpose
    https://www.tensorflow.org/api_docs/python/tf/nn/conv2d_transpose
    https://www.tensorflow.org/api_docs/python/tf/nn/conv3d_transpose
    1. "param_target": "op"
    output_shape: Value of output_shape
    strides: Value of strides
    padding: Value of padding
    dilations: Value of dilations
    5 Div 1. "param_target": "inputs"
    values: Value of input
    pre_process_transpose_perm: Transpose is applied to the tensor before the Div operation with the perm specified as pre-processing.
    2. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the Div operation with the perm specified as post-processing.
    6 Expand 1. "param_target": "inputs"
    values: Value of shape
    pre_process_transpose_perm: Transpose is applied to the tensor before the Expand operation with the perm specified as pre-processing.
    2. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the Expand operation with the perm specified as post-processing.
    7 Flatten 1. "param_target": "attributes"
    axis: Value of axis
    2. "param_target": "inputs"
    pre_process_transpose_perm: Transpose is applied to the tensor before the Flatten operation with the perm specified as pre-processing.
    3. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the Flatten operation with the perm specified as post-processing.
    8 Gemm
    9 Gather 1. "param_target": "attributes"
    axis: Value of axis
    2. "param_target": "inputs"
    values: Value of indices
    pre_process_transpose_perm: Transpose is applied to the tensor before the Gather operation with the perm specified as pre-processing.
    3. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the Gather operation with the perm specified as post-processing.
    10 MatMul 1. "param_target": "inputs"
    pre_process_transpose_perm: Transpose is applied to the tensor before the MatMul operation with the perm specified as pre-processing.
    2. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the MatMul operation with the perm specified as post-processing.
    11 Mul 1. "param_target": "inputs"
    values: Value of input
    pre_process_transpose_perm: Transpose is applied to the tensor before the Mul operation with the perm specified as pre-processing.
    2. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the Mul operation with the perm specified as post-processing.
    12 NonMaxSuppression
    13 ReduceL1
    ReduceL2
    ReduceLogSum
    ReduceLogSumExp
    ReduceMax
    ReduceMean
    ReduceMin
    ReduceProd
    ReduceSum
    ReduceSumSquare
    1. "param_target": "attributes"
    axes: Value of axes
    keepdims: Value of keepdims
    2. "param_target": "inputs"
    pre_process_transpose_perm: Transpose is applied to the tensor before the ReduceXX operation with the perm specified as pre-processing.
    3. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the ReduceXX operation with the perm specified as post-processing.
    14 Unsqueeze 1. "param_target": "inputs"
    pre_process_transpose_perm: Transpose is applied to the tensor before the Unsqueeze operation with the perm specified as pre-processing.
    2. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the Unsqueeze operation with the perm specified as post-processing.
    3. "param_target": "op"
    new_shape: Specifies directly the shape after Unsqueeze processing.
    {
      "op_name": "/backbone/backbone.1/Unsqueeze_1",
      "param_target": "op",
      "new_shape": [1,15,15,1]
    }
    15 Reshape 1. "param_target": "inputs"
    values: Value of shape
    pre_process_transpose_perm: Transpose is applied to the tensor before the Reshape operation with the perm specified as pre-processing.
    2. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the Reshape operation with the perm specified as post-processing.
    16 Resize 1. "param_target": "attributes"
    coordinate_transformation_mode: Value of coordinate_transformation_mode
    extrapolation_value: Value of extrapolation_value
    mode: Value of mode
    2. "param_target": "inputs"
    values: Value of roi or scales or sizes. scales=[scale_h,scale_w],sizes=[h,w]
    pre_process_transpose_perm: Transpose is applied to the tensor before the Resize operation with the perm specified as pre-processing.
    3. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the Resize operation with the perm specified as post-processing.
    17 Slice Slice implements special replacements separately ignore all automatic conversions and generate tf.strided_slice directly by specifying all parameters of tf.strided_slice directly.
    https://www.tensorflow.org/api_docs/python/tf/strided_slice
    See json_samples/replace_slice.json for a sample description.
    20221221222956
    1. "param_target": "op"
    begin: Value of begin
    end: Value of end
    strides: Value of strides
    begin_mask: Value of begin_mask
    end_mask: Value of end_mask
    ellipsis_mask: Value of ellipsis_mask
    new_axis_mask: Value of new_axis_mask
    shrink_axis_mask: Value of shrink_axis_mask
    {
      "op_name": "/Slice",
      "param_target": "op",
      "begin": [0,0,1,0],
      "end": [0,0,0,0],
      "end_mask": 15
    }
    18 Softmax 1. "param_target": "attributes"
    axis: Value of axis. The transpositions corresponding to the specified axis are extrapolated before and after Softmax.
    2. "param_target": "inputs"
    values: Value of tensor
    19 Split 1. "param_target": "inputs"
    values: Value of split
    2. "param_target": "attributes"
    axis: Value of axis.
    num_outputs: Value of num_outputs.
    20 Sub 1. "param_target": "inputs"
    values: Value of input
    pre_process_transpose_perm: Transpose is applied to the tensor before the Sub operation with the perm specified as pre-processing.
    2. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the Sub operation with the perm specified as post-processing.
    21 Tile 1. "param_target": "inputs"
    values: Value of input
    pre_process_transpose_perm: Transpose is applied to the tensor before the Tile operation with the perm specified as pre-processing.
    2. "param_target": "outputs"
    post_process_transpose_perm: Transpose is applied to the tensor after the Tile operation with the perm specified as post-processing.
    22 Transpose 1. "param_target": "attributes"
    perm: Value of perm
    2. "param_target": "inputs"
    values: Value of tensor

Generated Model

Validated models (without replacement.json)

ONNX file for testing. https://github.com/PINTO0309/onnx2tf/releases/tag/1.1.28

See a list of verified models
No. Model Pass
1 age_googlenet.onnx :heavy_check_mark:
2 alike_t_opset11_192x320.onnx :heavy_check_mark:
3 arcfaceresnet100-8.onnx :heavy_check_mark:
4 baseline_simplified.onnx :heavy_check_mark:
5 big_slice_11.onnx :heavy_check_mark:
6 bvlcalexnet-12.onnx :heavy_check_mark:
7 caffenet-12.onnx :heavy_check_mark:
8 convtranspose_3_1_5_2.onnx :heavy_check_mark:
9 convtranspose_4_5_2_2.onnx :heavy_check_mark:
10 convtranspose_5_5_6_1.onnx :heavy_check_mark:
11 convtranspose_6_5_5_8.onnx :heavy_check_mark:
12 convtranspose_7_1_3_4.onnx :heavy_check_mark:
13 damoyolo_tinynasL20_T_192x192_post.onnx :heavy_check_mark:
14 deeplabv3_mobilenet_v3_large.onnx :heavy_check_mark:
15 densenet-12.onnx :heavy_check_mark:
16 depth_to_spase_17.onnx :heavy_check_mark:
17 double_gru.onnx :heavy_check_mark:
18 digits.onnx :heavy_check_mark:
19 detr_demo.onnx :heavy_check_mark:
20 efficientformer_l1.onnx :heavy_check_mark:
21 efficientdet_lite2_detection_1.onnx :heavy_check_mark:
22 efficientnet-lite4-11_nchw.onnx :heavy_check_mark:
23 effnet_opset11_dynamic_axis.onnx :heavy_check_mark:
24 emotion-ferplus-8_rename.onnx :heavy_check_mark:
25 face_detection_yunet_2022mar.onnx :heavy_check_mark:
26 face_recognition_sface_2021dec-act_int8-wt_int8-quantized.onnx :heavy_check_mark:
27 face_recognition_sface_2021dec.onnx :heavy_check_mark:
28 faster_rcnn-10.onnx :heavy_check_mark:
29 fastestdet.onnx :heavy_check_mark:
30 fused_conv_clip.onnx :heavy_check_mark:
31 fused_conv_hardsigmoid.onnx :heavy_check_mark:
32 fused_conv_leakyrelu.onnx :heavy_check_mark:
33 fused_conv_relu.onnx :heavy_check_mark:
34 fused_conv_sigmoid.onnx :heavy_check_mark:
35 fused_conv_tanh.onnx :heavy_check_mark:
36 gender_googlenet.onnx :heavy_check_mark:
37 gmflow-scale1-mixdata-train320x576-4c3a6e9a_1x3x480x640_bidir_flow_sim.onnx :heavy_check_mark:
38 handpose_estimation_mediapipe_2022may.onnx :heavy_check_mark:
39 htnet_1x17x2_without_norm.onnx :heavy_check_mark:
40 iat_llie_180x320.onnx :heavy_check_mark:
41 if_p1_11.onnx :heavy_check_mark:
42 if_p2_11.onnx :heavy_check_mark:
43 if_p3_11.onnx :heavy_check_mark:
44 imageclassifier.onnx :heavy_check_mark:
45 inception-v2-9.onnx :heavy_check_mark:
46 inverse11.onnx :heavy_check_mark:
47 mhformer_NxFxKxXY_1x27x17x2.onnx :heavy_check_mark:
48 mnist.onnx :heavy_check_mark:
49 mnist-12.onnx :heavy_check_mark:
50 mobilenetv2-12.onnx :heavy_check_mark:
51 mosaic_11.onnx :heavy_check_mark:
52 mosaic-9.onnx :heavy_check_mark:
53 movenet_multipose_lightning_192x256_p6.onnx :heavy_check_mark:
54 nanodet-plus-m_416.onnx :heavy_check_mark:
55 object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx :heavy_check_mark:
56 object_tracking_dasiamrpn_kernel_r1_2021nov.onnx :heavy_check_mark:
57 object_tracking_dasiamrpn_model_2021nov.onnx :heavy_check_mark:
58 pidnet_S_cityscapes_192x320.onnx :heavy_check_mark:
59 ppmattingv2_stdc1_human_480x640.onnx :heavy_check_mark:
60 qlinear_conv_tensor_test.onnx :heavy_check_mark:
61 rcnn-ilsvrc13-9.onnx :heavy_check_mark:
62 regnet_x_400mf.onnx :heavy_check_mark:
63 ResNet101-DUC-12.onnx :heavy_check_mark:
64 resnet18-v1-7.onnx :heavy_check_mark:
65 resnet50-v1-12.onnx :heavy_check_mark:
66 resnet50-v2-7.onnx :heavy_check_mark:
67 retinanet-9.onnx :heavy_check_mark:
68 sinet_320_op.onnx :heavy_check_mark:
69 squeezenet1.0-12.onnx :heavy_check_mark:
70 super-resolution-10.onnx :heavy_check_mark:
71 swinir-m_64x64_12.onnx :heavy_check_mark:
72 text_recognition_CRNN_EN_2021sep.onnx :heavy_check_mark:
73 tinyyolov2-8.onnx :heavy_check_mark:
74 version-RFB-640.onnx :heavy_check_mark:
75 vit-b-32_textual.onnx :heavy_check_mark:
76 vit-b-32_visual.onnx :heavy_check_mark:
77 yolact_edge_mobilenetv2_550x550.onnx :heavy_check_mark:
78 yolact_regnetx_600mf_d2s_31classes_512x512.onnx :heavy_check_mark:
79 yolact_regnetx_800mf_20classes_512x512.onnx :heavy_check_mark:
80 yolo_free_nano_crowdhuman_192x320_post.onnx :heavy_check_mark:
81 yolov7_tiny_head_0.768_post_480x640.onnx :heavy_check_mark:
82 yolox_nano_192x192.onnx :heavy_check_mark:
83 yolox_nano_416x416.onnx :heavy_check_mark:
84 yolox_s.onnx :heavy_check_mark:
85 yolox_x_crowdhuman_mot17_bytetrack.onnx :heavy_check_mark:
86 zero_dce_640_dele.onnx :heavy_check_mark:
87 zfnet512-12.onnx :heavy_check_mark:

Related tools

  1. tflite2tensorflow
  2. openvino2tensorflow
  3. tflite2json2tflite
  4. tensorflowjs_converter
  5. coremltools
  6. simple-onnx-processing-tools
  7. tflite-input-output-rewriter
  8. onnx-simplifier
  9. onnx_graphsurgeon
  10. onnx
  11. onnx-tensorflow
  12. onnx2keras
  13. TinyNeuralNetwork
  14. nobuco
  15. onnx2torch
  16. ai-edge-torch
  17. LiteRT.js
  18. eiq-onnx2tflite

Acknowledgement

  1. https://github.com/onnx/models
  2. https://github.com/opencv/opencv_zoo
  3. https://pytorch.org/vision/stable/models.html
  4. https://tfhub.dev/
  5. https://www.kaggle.com/models
  6. https://github.com/TexasInstruments/edgeai-modelzoo

Contributors

Made with contrib.rocks.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx2tf-2.0.19.tar.gz (630.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

onnx2tf-2.0.19-py3-none-any.whl (822.4 kB view details)

Uploaded Python 3

File details

Details for the file onnx2tf-2.0.19.tar.gz.

File metadata

  • Download URL: onnx2tf-2.0.19.tar.gz
  • Upload date:
  • Size: 630.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for onnx2tf-2.0.19.tar.gz
Algorithm Hash digest
SHA256 ff297e6db15907dc71250f88bee866c4c46452f68f334c736aa39587570ba8af
MD5 e283e57a44a598fbb833e28b8e56d2ae
BLAKE2b-256 abb0318da370c400c52a7cb8904a724f65414bb7a48b111b9faa0c6382e9d6e5

See more details on using hashes here.

File details

Details for the file onnx2tf-2.0.19-py3-none-any.whl.

File metadata

  • Download URL: onnx2tf-2.0.19-py3-none-any.whl
  • Upload date:
  • Size: 822.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for onnx2tf-2.0.19-py3-none-any.whl
Algorithm Hash digest
SHA256 e8d9bd769db0af6f8ae1298a1bffbe474778b2d61a1c92e24d9599694b59e1fe
MD5 7cddfccbe67412f5fe6db91abd705cba
BLAKE2b-256 676999259447061f972984bf9dc9a34178a5ebeded85f3891e4ace1247975212

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page