Skip to main content

pandas, scikit-learn and xgboost integration

Project description

https://img.shields.io/pypi/v/pandas_ml.svg Latest Docs https://travis-ci.org/pandas-ml/pandas-ml.svg?branch=master https://codecov.io/gh/pandas-ml/pandas-ml/branch/master/graph/badge.svg

Overview

pandas, scikit-learn and xgboost integration.

Installation

$ pip install pandas_ml

Documentation

http://pandas-ml.readthedocs.org/en/stable/

Example

>>> import pandas_ml as pdml
>>> import sklearn.datasets as datasets

# create ModelFrame instance from sklearn.datasets
>>> df = pdml.ModelFrame(datasets.load_digits())
>>> type(df)
<class 'pandas_ml.core.frame.ModelFrame'>

# binarize data (features), not touching target
>>> df.data = df.data.preprocessing.binarize()
>>> df.head()
   .target  0  1  2  3  4  5  6  7  8 ...  54  55  56  57  58  59  60  61  62  63
0        0  0  0  1  1  1  1  0  0  0 ...   0   0   0   0   1   1   1   0   0   0
1        1  0  0  0  1  1  1  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
2        2  0  0  0  1  1  1  0  0  0 ...   1   0   0   0   0   1   1   1   1   0
3        3  0  0  1  1  1  1  0  0  0 ...   1   0   0   0   1   1   1   1   0   0
4        4  0  0  0  1  1  0  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
[5 rows x 65 columns]

# split to training and test data
>>> train_df, test_df = df.model_selection.train_test_split()

# create estimator (accessor is mapped to sklearn namespace)
>>> estimator = df.svm.LinearSVC()

# fit to training data
>>> train_df.fit(estimator)

# predict test data
>>> test_df.predict(estimator)
0     4
1     2
2     7
...
448    5
449    8
Length: 450, dtype: int64

# Evaluate the result
>>> test_df.metrics.confusion_matrix()
Predicted   0   1   2   3   4   5   6   7   8   9
Target
0          52   0   0   0   0   0   0   0   0   0
1           0  37   1   0   0   1   0   0   3   3
2           0   2  48   1   0   0   0   1   1   0
3           1   1   0  44   0   1   0   0   3   1
4           1   0   0   0  43   0   1   0   0   0
5           0   1   0   0   0  39   0   0   0   0
6           0   1   0   0   1   0  35   0   0   0
7           0   0   0   0   2   0   0  42   1   0
8           0   2   1   0   1   0   0   0  33   1
9           0   2   1   2   0   0   0   0   1  38

Supported Packages

  • scikit-learn

  • patsy

  • xgboost

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas_ml-0.6.1.tar.gz (76.6 kB view details)

Uploaded Source

Built Distribution

pandas_ml-0.6.1-py3-none-any.whl (100.3 kB view details)

Uploaded Python 3

File details

Details for the file pandas_ml-0.6.1.tar.gz.

File metadata

  • Download URL: pandas_ml-0.6.1.tar.gz
  • Upload date:
  • Size: 76.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.19.5 CPython/3.6.6

File hashes

Hashes for pandas_ml-0.6.1.tar.gz
Algorithm Hash digest
SHA256 f5d4f7c6eeada8e98856daace511cdc84995b593a3ae2741dcc4e665ec2918d3
MD5 02bd005d22954f682388621ea131b475
BLAKE2b-256 ac69f63b234546e39558e8121980daaf7389e52554a608da50005f52dc14f53f

See more details on using hashes here.

File details

Details for the file pandas_ml-0.6.1-py3-none-any.whl.

File metadata

  • Download URL: pandas_ml-0.6.1-py3-none-any.whl
  • Upload date:
  • Size: 100.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.19.5 CPython/3.6.6

File hashes

Hashes for pandas_ml-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 89fb14c2c655170ac9dc42a29bd6ecdc085f0eaf1213c03149738c540d8a55f5
MD5 4108ef948e3651c34d3a878971c76940
BLAKE2b-256 ae726d90debfcb9ea74ec00927fa7ed0204dcc560b1f9ffcd8b239daa7fd106d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page