pandas, scikit-learn and xgboost integration
Project description
Overview
pandas, scikit-learn and xgboost integration.
Installation
$ pip install pandas_ml
Documentation
Example
>>> import pandas_ml as pdml
>>> import sklearn.datasets as datasets
# create ModelFrame instance from sklearn.datasets
>>> df = pdml.ModelFrame(datasets.load_digits())
>>> type(df)
<class 'pandas_ml.core.frame.ModelFrame'>
# binarize data (features), not touching target
>>> df.data = df.data.preprocessing.binarize()
>>> df.head()
.target 0 1 2 3 4 5 6 7 8 ... 54 55 56 57 58 59 60 61 62 63
0 0 0 0 1 1 1 1 0 0 0 ... 0 0 0 0 1 1 1 0 0 0
1 1 0 0 0 1 1 1 0 0 0 ... 0 0 0 0 0 1 1 1 0 0
2 2 0 0 0 1 1 1 0 0 0 ... 1 0 0 0 0 1 1 1 1 0
3 3 0 0 1 1 1 1 0 0 0 ... 1 0 0 0 1 1 1 1 0 0
4 4 0 0 0 1 1 0 0 0 0 ... 0 0 0 0 0 1 1 1 0 0
[5 rows x 65 columns]
# split to training and test data
>>> train_df, test_df = df.model_selection.train_test_split()
# create estimator (accessor is mapped to sklearn namespace)
>>> estimator = df.svm.LinearSVC()
# fit to training data
>>> train_df.fit(estimator)
# predict test data
>>> test_df.predict(estimator)
0 4
1 2
2 7
...
448 5
449 8
Length: 450, dtype: int64
# Evaluate the result
>>> test_df.metrics.confusion_matrix()
Predicted 0 1 2 3 4 5 6 7 8 9
Target
0 52 0 0 0 0 0 0 0 0 0
1 0 37 1 0 0 1 0 0 3 3
2 0 2 48 1 0 0 0 1 1 0
3 1 1 0 44 0 1 0 0 3 1
4 1 0 0 0 43 0 1 0 0 0
5 0 1 0 0 0 39 0 0 0 0
6 0 1 0 0 1 0 35 0 0 0
7 0 0 0 0 2 0 0 42 1 0
8 0 2 1 0 1 0 0 0 33 1
9 0 2 1 2 0 0 0 0 1 38
Supported Packages
scikit-learn
patsy
xgboost
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pandas_ml-0.6.0.tar.gz
(76.8 kB
view details)
Built Distributions
pandas_ml-0.6.0-py3.6.egg
(256.2 kB
view details)
pandas_ml-0.6.0-py3-none-any.whl
(102.9 kB
view details)
File details
Details for the file pandas_ml-0.6.0.tar.gz
.
File metadata
- Download URL: pandas_ml-0.6.0.tar.gz
- Upload date:
- Size: 76.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.19.5 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
43e54b1a6d17ef76c7c7bc64ac2a2a9ef4060e57b920e81a81895897e2cd9125
|
|
MD5 |
68f0a19a0110e1a0bbb27d6010e6e712
|
|
BLAKE2b-256 |
af7ed7f73fa543c4b922f31e05c4625cce552ed4b19a8bc87407f7e75076452c
|
File details
Details for the file pandas_ml-0.6.0-py3.6.egg
.
File metadata
- Download URL: pandas_ml-0.6.0-py3.6.egg
- Upload date:
- Size: 256.2 kB
- Tags: Egg
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.19.5 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
c0dfb7979d8eabf7278a563c33042c97a2e6a9dbfbb4a828a261aa52551d0e91
|
|
MD5 |
9f19aada1ec5dbb7b0f03b0521e7f603
|
|
BLAKE2b-256 |
706482eb29e829008f12ddbf08752a6615ef4400b3744f68258b03841b356b06
|
File details
Details for the file pandas_ml-0.6.0-py3-none-any.whl
.
File metadata
- Download URL: pandas_ml-0.6.0-py3-none-any.whl
- Upload date:
- Size: 102.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.19.5 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
a22251d3c170afd5327783ccb86ce033c810180a4a6e03c1e63e6de2cc884bb5
|
|
MD5 |
60f1f589bc38970cb50e94fe1405a2e0
|
|
BLAKE2b-256 |
8ccdefa2c3c4ab89c03184e96692c7e288c8272b08614b52786cbadb3c7b50aa
|