Skip to main content

pandas, scikit-learn and xgboost integration

Project description

https://img.shields.io/pypi/v/pandas_ml.svg Latest Docs https://travis-ci.org/sinhrks/pandas-ml.svg?branch=master https://coveralls.io/repos/sinhrks/pandas-ml/badge.svg?branch=master&service=github

Overview

pandas, scikit-learn and xgboost integration.

Installation

$ pip install pandas_ml

Documentation

http://pandas-ml.readthedocs.org/en/stable/

Example

>>> import pandas_ml as pdml
>>> import sklearn.datasets as datasets

# create ModelFrame instance from sklearn.datasets
>>> df = pdml.ModelFrame(datasets.load_digits())
>>> type(df)
<class 'pandas_ml.core.frame.ModelFrame'>

# binarize data (features), not touching target
>>> df.data = df.data.preprocessing.binarize()
>>> df.head()
   .target  0  1  2  3  4  5  6  7  8 ...  54  55  56  57  58  59  60  61  62  63
0        0  0  0  1  1  1  1  0  0  0 ...   0   0   0   0   1   1   1   0   0   0
1        1  0  0  0  1  1  1  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
2        2  0  0  0  1  1  1  0  0  0 ...   1   0   0   0   0   1   1   1   1   0
3        3  0  0  1  1  1  1  0  0  0 ...   1   0   0   0   1   1   1   1   0   0
4        4  0  0  0  1  1  0  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
[5 rows x 65 columns]

# split to training and test data
>>> train_df, test_df = df.cross_validation.train_test_split()

# create estimator (accessor is mapped to sklearn namespace)
>>> estimator = df.svm.LinearSVC()

# fit to training data
>>> train_df.fit(estimator)

# predict test data
>>> test_df.predict(estimator)
0     4
1     2
2     7
...
448    5
449    8
Length: 450, dtype: int64

# Evaluate the result
>>> test_df.metrics.confusion_matrix()
Predicted   0   1   2   3   4   5   6   7   8   9
Target
0          52   0   0   0   0   0   0   0   0   0
1           0  37   1   0   0   1   0   0   3   3
2           0   2  48   1   0   0   0   1   1   0
3           1   1   0  44   0   1   0   0   3   1
4           1   0   0   0  43   0   1   0   0   0
5           0   1   0   0   0  39   0   0   0   0
6           0   1   0   0   1   0  35   0   0   0
7           0   0   0   0   2   0   0  42   1   0
8           0   2   1   0   1   0   0   0  33   1
9           0   2   1   2   0   0   0   0   1  38

Supported Packages

  • scikit-learn

  • patsy

  • xgboost

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas_ml-0.3.0.tar.gz (55.2 kB view details)

Uploaded Source

File details

Details for the file pandas_ml-0.3.0.tar.gz.

File metadata

  • Download URL: pandas_ml-0.3.0.tar.gz
  • Upload date:
  • Size: 55.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas_ml-0.3.0.tar.gz
Algorithm Hash digest
SHA256 f4698ac1fc4c6a8eaaab1d6440a58cd0f6cc1c6c9889e160bd71ef070fd91925
MD5 78d36adeac4f31aa3b2fa829c46ca9fe
BLAKE2b-256 4f87bff0035390d483944c94c71e01c328bde4051e6e091162ec74b34ccc18db

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page