Skip to main content

Python binding for cvodes from the sundials library.

Project description

Build status PyPI version License coverage https://zenodo.org/badge/43224425.svg

pycvodes provides a Python binding to the Ordinary Differential Equation integration routines from cvodes in the SUNDIALS suite. pcyvodes allows a user to numerically integrate (systems of) differential equations. Note that routines for sensitivity analysis is not yet exposed in this binding (which makes the functionality essentially the same as cvode).

The following multistep methods are available:

  • bdf: Backward differentiation formula (of order 1 to 5)

  • adams: implicit Adams method (order 1 to 12)

Note that bdf (as an implicit stepper) requires a user supplied callback for calculating the jacobian.

Documentation

Autogenerated API documentation for latest stable release is found here: https://bjodah.github.io/pycvodes/latest (and the development version for the current master branch are found here: http://hera.physchem.kth.se/~pycvodes/branches/master/html).

Installation

Simplest way to install is to use the conda package manager:

$ conda install -c conda-forge -c bjodah pycvodes pytest
$ python -m pytest --pyargs pycvodes

tests should pass.

Binary distribution is available here: https://anaconda.org/bjodah/pycvodes

Source distribution is available here: https://pypi.python.org/pypi/pycvodes

When installing from source you can choose what lapack lib to link against by setting the environment variable PYCVODES_LAPACK, your choice can later be accessed from python:

>>> from pycvodes import _config
>>> _config.env['LAPACK']
'lapack'

Examples

The classic van der Pol oscillator (see examples/van_der_pol.py)

>>> import numpy as np
>>> from pycvodes import integrate_predefined  # also: integrate_adaptive
>>> mu = 1.0
>>> def f(t, y, dydt):
...     dydt[0] = y[1]
...     dydt[1] = -y[0] + mu*y[1]*(1 - y[0]**2)
...
>>> def j(t, y, Jmat, dfdt=None, fy=None):
...     Jmat[0, 0] = 0
...     Jmat[0, 1] = 1
...     Jmat[1, 0] = -1 - mu*2*y[1]*y[0]
...     Jmat[1, 1] = mu*(1 - y[0]**2)
...     if dfdt is not None:
...         dfdt[:] = 0
...
>>> y0 = [1, 0]; dt0=1e-8; t0=0.0; atol=1e-8; rtol=1e-8
>>> tout = np.linspace(0, 10.0, 200)
>>> yout, info = integrate_predefined(f, j, y0, tout, atol, rtol, dt0,
...                                   method='bdf')
>>> import matplotlib.pyplot as plt
>>> series = plt.plot(tout, yout)
>>> plt.show()  # doctest: +SKIP
https://raw.githubusercontent.com/bjodah/pycvodes/master/examples/van_der_pol.png

For more examples see examples/, and rendered jupyter notebooks here: http://hera.physchem.kth.se/~pycvodes/branches/master/examples

License

The source code is Open Source and is released under the simplified 2-clause BSD license. See LICENSE for further details.

Contributors are welcome to suggest improvements at https://github.com/bjodah/pycvodes

Author

Björn I. Dahlgren, contact:

  • gmail address: bjodah

  • kth.se address: bda

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycvodes-0.7.4.tar.gz (106.3 kB view details)

Uploaded Source

File details

Details for the file pycvodes-0.7.4.tar.gz.

File metadata

  • Download URL: pycvodes-0.7.4.tar.gz
  • Upload date:
  • Size: 106.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pycvodes-0.7.4.tar.gz
Algorithm Hash digest
SHA256 030bb9ad83355be7d2699e4f0be4fb70bb91d0682b4e2823f18e6d8d71c2f2bc
MD5 f30d1f525e3619d20a0babe28a512a4b
BLAKE2b-256 fa62b28106b303c91e5ad8433ff91c50559b41b211216ee8a1bc7af39f51eed1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page