Skip to main content

Python Sdk for Milvus

Project description

Milvus Python SDK -- pymilvus

version license

Using Milvus python sdk for Milvus Download

Pymilvus only supports python >= 3.4, is fully tested under 3.4, 3.5, 3.6, 3.7.

Pymilvus can be downloaded via pip. If no use, try pip3

$ pip install pymilvus

Different versions of Milvus and lowest/highest pymilvus version supported accordingly

Milvus version Lowest pymilvus version supported Highest pymivus version supported
0.3.0 - 0.1.13
0.3.1 0.1.14 0.1.25
0.4.0 0.2.0 -

You can download a specific version by:

$ pip install pymilvus==0.2.0

If you want to upgrade pymilvus to newest version

$ pip install --upgrade pymilvus


from milvus import Milvus, IndexType, MetricType, Status

Getting started

Initial a Milvus instance and connect to the sever

>>> milvus = Milvus()

>>> milvus.connect(host='SERVER-HOST', port='SERVER-PORT')
Status(code=0, message='Successfully connected!')

Once successfully connected, you can get the version of server

>>> milvus.server_version()
(Status(code=0, message='Success'), 0.4.0)  # this is example version, the real version may vary

Add a new table

First set param

>>> param = {'table_name':'test01', 'dimension':256, 'index_file_size':1024, 'metric_type':MetricType.L2}

Then create table

>>> milvus.create_table(param)
Status(code=0, message='Create table successfully!')

Describe the table we just created

>>> milvus.describe_table('test01')
(Status(code=0, message='Describe table successfully!'), TableSchema(table_name='test01', dimension=256, index_file_size=1024, metric_type=<MetricType: L2>))

Add vectors into table test01

First create 20 vectors of 256-dimension.

  • Note that random and pprint we used here is for creating fake vectors data and pretty print, you may not need them in your project
>>> import random
>>> from pprint import pprint

>>> dim = 256  # Dimension of the vector

# Initialize 20 vectors of 256-dimension
>>> vectors = [[random.random() for _ in range(dim)] for _ in range(20)]

Then add vectors into table test01

>>> status, ids = milvus.add_vectors(table_name='test01', records=vectors)
>>> print(status)
Status(code=0, message='Success')
>>> pprint(ids) # List of ids returned

You can also specify vectors id

>>> vector_ids = [i for i in range(20)]
>>> status, ids = milvus.add_vectors(table_name='test01', records=vectors, ids=vector_ids)
>>> pprint(ids)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Get vectors num

>>> milvus.get_table_row_count('test01')
(Status(code=0, message='Success!'), 20)

Load vectors into memory

>>> milvus.preload_table('test01')
Status(code=0, message='')

Create index

>>> index_param = {'index_type': IndexType.IVFLAT, 'nlist': 16384}
>>> milvus.create_index('test01', index_param)
Status(code=0, message='Build index successfully!')

Then show index information

>>> client.describe_index('test01')
(Status(code=0, message='Successfully'), IndexParam(_table_name='test01', _index_type=<IndexType: IVFLAT>, _nlist=16384))

Search vectors

# create 5 vectors of 256-dimension
>>> q_records = [[random.random() for _ in range(dim)] for _ in range(5)]

Then get results

>>> status, results = milvus.search_vectors(table_name='test01', query_records=q_records, top_k=1, nprobe=16)
>>> print(status)
Status(code=0, message='Search vectors successfully!')
>>> pprint(results) # Searched top_k vectors
[QueryResult(id=0, distance=34.85963439941406)],
[QueryResult(id=0, distance=36.73900604248047)],
[QueryResult(id=0, distance=34.35655975341797)],
[QueryResult(id=18, distance=36.19701385498047)],
[QueryResult(id=5, distance=39.11549758911133)]

Drop index

>>> milvus.drop_index('test01')
Status(code=0, message='')

Delete vectors by date range

>>> milvus.delete_vectors_by_range('test01', '2019-06-01', '2020-01-01')
Status(code=0, message='')

Delete the table we just created

>>> milvus.delete_table(table_name='test01')
Status(code=0, message='Success')

Disconnect with the server

>>> milvus.disconnect()
Status(code=0, message='Success')

Example python

There are some small examples in examples/, you can find more guide there.

Build docs

$ sphinx-build -b html doc/en/ doc/en/build

If you encounter any problems or bugs, please open new issues

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pymilvus, version 0.2.0
Filename, size File type Python version Upload date Hashes
Filename, size pymilvus-0.2.0-py3-none-any.whl (28.7 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size pymilvus-0.2.0.tar.gz (22.3 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page