Skip to main content
Join the official 2020 Python Developers SurveyStart the survey!

Python Sdk for Milvus

Project description

Milvus Python SDK

version Downloads Downloads Downloads license

Python SDK for Milvus. To contribute code to this project, please read our contribution guidelines first.

For detailed SDK documentation, refer to API Documentation.

New features

  • remove get_index_info, the index info can be obtained by get_collection_info

  • add get_collection_stats, more detailed collection stats.

Get started


pymilvus only supports Python 3.5 or higher.

Install pymilvus

You can install pymilvus via pip or pip3 for Python3:

$ pip3 install pymilvus

The following collection shows Milvus versions and recommended pymilvus versions:

Milvus version Recommended pymilvus version
0.3.0 0.1.13
0.3.1 0.1.25
0.4.0 0.2.2
0.5.0 0.2.3
0.5.1 0.2.3
0.5.2 0.2.3
0.5.3 0.2.5
0.6.0 0.2.6, 0.2.7
0.7.0 0.2.8
0.7.1 0.2.9
0.8.0 0.2.10
0.9.0 0.2.11
0.9.1 0.2.12
0.10.0 0.2.13
>=0.10.1, <0.11.0 0.2.14
0.11.0 0.3.0

You can install a specific version of pymilvus by:

$ pip install pymilvus==0.3.0

You can upgrade pymilvus to the latest version by:

$ pip install --upgrade pymilvus


Refer to examples for more example programs.

Basic operations

Connect to the Milvus server

  1. Import pymilvus.
# Import pymilvus
>>> from milvus import Milvus, DataType
  1. Create a client to Milvus server using one of the following methods:
# Connect to Milvus server
>>> client = Milvus(host='localhost', port='19530')

Note: In the above code, default values are used for host and port parameters. Feel free to change them to the IP address and port you set for Milvus server.

>>> client = Milvus(uri='tcp://localhost:19530')

Create/Drop collections

Create a collection

  1. Prepare collection parameters.
# create collection name
>>> collection_name = 'test01'

# create a collection of 4 fields, fields A, B and C are int type fields
# and Vec is a float vector field.
# segment_row_limit is default as 524288 if not specified
>>> collection_param = {
...    "fields": [
...        {"name": "A", "type": DataType.INT32},
...        {"name": "B", "type": DataType.INT32},
...        {"name": "C", "type": DataType.INT64},
...        {"name": "Vec", "type": DataType.FLOAT_VECTOR, "params": {"dim": 128}}
...    ],
...    "segment_row_limit": 4096,
...    "auto_id": True
... }
  1. Create collection test01 with dimension of 128, size of the data file for Milvus to automatically create indexes as 4096. If metric_type isn't offered, default metric type is Euclidean distance (L2). For FLOAT_VECTOR field, dim is a must.
# Create a collection
>>> client.create_collection(collection_name, collection_param)
  1. You can check collection info by get_collection_info
>>> info = client.get_collection_info('test01')
>>> info
{'fields': [
    {'name': 'A', 'type': <DataType.INT32: 4>, 'params': {}, 'indexes': [{}]},
    {'name': 'C', 'type': <DataType.INT64: 5>, 'params': {}, 'indexes': [{}]},
    {'name': 'B', 'type': <DataType.INT32: 4>, 'params': {}, 'indexes': [{}]},
    {'name': 'Vec', 'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 128},
     'indexes': [{}]}
 'auto_id': True,
 'segment_row_limit': 4096

You can see from the info, there is an auto_id option in collection info, and its True by default. So if you have your own ids and don't want auto generated ids, you may want to set auto_id to False while creating collections.

Drop a collection

# Drop collection
>>> status = client.drop_collection('test01')
>>> status
Status(code=0, message='OK')

Create/Drop partitions in a collection

Create a partition

You can split collections into partitions by partition tags for improved search performance.

# Create partition
>>> client.create_partition(collection_name='test01', partition_tag='tag01')

Use list_partitions() to verify whether the partition is created.

# Show partitions
>>> partitions = client.list_partitions(collection_name='test01')
>>> partitions
['_default', 'tag01']

Drop a partition

# Drop partitions
>>> status = client.drop_partition(collection_name='test01', partition_tag='tag01')
Status(code=0, message='OK')

Create/Drop indexes in a collection

Create an index

Note: In production, it is recommended to create indexes before inserting vectors into the collection. Index is automatically built when vectors are being imported. However, you need to create the same index again after the vector insertion process is completed because some data files may not meet the index_file_size and index will not be automatically built for these data files.

  1. Create an index of IVF_FLAT with nlist = 100 for the collection.
# Create index
>>> status = client.create_index('test01', "Vec", {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 100}})
>>> status
Status(code=0, message='OK')   
  1. You can check index info by get_collection_info
>>> info = client.get_collection_info('test01')
>>> info
{'fields': [
    {'name': 'A', 'type': <DataType.INT32: 4>, 'params': {}, 'indexes': [{}]},
    {'name': 'C', 'type': <DataType.INT64: 5>, 'params': {}, 'indexes': [{}]},
    {'name': 'B', 'type': <DataType.INT32: 4>, 'params': {}, 'indexes': [{}]},
    {'name': 'Vec',
        'type': <DataType.FLOAT_VECTOR: 101>,
        'params': {'dim': 128, 'metric_type': 'L2'},
        'indexes': [{'index_type': 'IVF_FLAT', 'metric_type': 'L2', 'params': {'nlist': 100}}]}],
 'auto_id': True,
 'segment_row_limit': 4096

Drop an index

# Drop an index of a spacific field "Vec"
>>> status = client.drop_index('test01', "Vec")
Status(code=0, message='OK')

Insert/Delete entities in collections/partitions

Insert entities in a collection

  1. Generate 5000 vectors of 128 dimension and an integer list.
>>> import random
>>> num = 5000

# Generate a list of integer.
>>> list_of_int = [random.randint(0, 255) for _ in range(num)]
# Generate 20 vectors of 128 dimension
>>> vectors = [[random.random() for _ in range(128)] for _ in range(num)]
  1. Create hybrid entities
>>> hybrid_entities = [
   {"name": "A", "values": list_of_int, "type": DataType.INT32},
   {"name": "B", "values": list_of_int, "type": DataType.INT32},
   {"name": "C", "values": list_of_int, "type": DataType.INT64},
   {"name": "Vec", "values": vectors, "type":DataType.FLOAT_VECTOR}
  1. Insert the hybrid entities.

If you create a new collection with auto_id = True, Milvus automatically generates IDs for the vectors.

# Insert vectors
>>> ids = client.insert('test01', hybrid_entities)

If you create a new collection with auto_id = False, you have to provide user-defined vector ids:

# Generate fake custom ids
>>> vector_ids = [id for id in range(num)]
# Insert to the non-auto-id collection
>>> ids = client.insert('test01', hybrid_entities, ids=vector_ids)

The examples below are based on collection with auto_id = True.

Insert entities in a partition

>>> inserted_vector_ids = client.insert('test01', hybrid_entities, partition_tag="tag01")

To verify the entities you have inserted, use get_entity_by_id().

>>> entities = client.get_entity_by_id(collection_name='test01', ids=inserted_vector_ids[:10])

Delete entities by ID

You can delete these entities by:

>>> status = client.delete_entity_by_id('test01', ids[:10])
>>> status
Status(code=0, message='OK')

Flush data in one or multiple collections to disk

When performing operations related to data changes, you can flush the data from memory to disk to avoid possible data loss. Milvus also supports automatic flushing, which runs at a fixed interval to flush the data in all collections to disk. You can use the Milvus server configuration file to set the interval.

>>> client.flush(['test01'])

Compact all segments in a collection

A segment is a data file that Milvus automatically creates by merging inserted vector data. A collection can contain multiple segments. If some vectors are deleted from a segment, the space taken by the deleted vectors cannot be released automatically. You can compact segments in a collection to release space.

>>> status = client.compact('test01')
>>> status
Status(code=0, message='OK')

Search entities in collections/partitions

Search entities in a collection

  1. Prepare search parameters. "term" and "range" is optional, "params" in "vector" stands for index params.
# This dsl will search topk `entities` that are
# close to vectors[:1] searched by `IVF_FLAT` index with `nprobe = 10` and `metric_type = L2`,
# AND field "A" in [1, 2, 5],
# AND field "B" greater than 1 less than 100
>>> dsl = {
...     "bool": {
...         "must":[
...             {
...                 "term": {"A": [1, 2, 5]}
...             },
...             {
...                 "range": {"B": {"GT": 1, "LT": 100}}
...             },
...             {
...                 "vector": {
...                    "Vec": {"topk": 10, "query": vectors[:1], "metric_type": "L2", "params": {"nprobe": 10}}
...                 }
...             }
...         ]
...     }
... }

A search without hybrid conditions with IVF_FLAT index would be like:

>>> dsl = {
...     "bool": {
...         "must":[
...             {
...                 "vector": {
...                    "Vec": {"topk": 10, "query": vectors[:1], "metric_type": "L2", "params": {"nprobe": 10}}
...                 }
...             }
...         ]
...     }
... }

A FLAT search doesn't need index params, so the query would be like:

>>> dsl = {
...     "bool": {
...         "must":[
...             {
...                 "vector": {
...                    "Vec": {"topk": 10, "query": vectors[0], "metric_type": "L2"}
...                 }
...             }
...         ]
...     }
... }
  1. Search entities.

With fields=["B"], not only can you get entity ids and distances, but also values of a spacific field B.

# search entities and get entity field B back
>>> results ='test01', dsl, fields=["B"])

You can obtain ids, distances and fields by entities in results.

# Results consist of number-of-query entities
>>> entities = results[0]

# Entities consists of topk entity
>>> entity = entities[0]

# You can get all ids and distances by entities
>>> all_ids = entities.ids
>>> all_distances = entities.distances

# Or you can get them one by one by entity
>>> a_id =
>>> a_distance = entity.distance
>>> a_field = entity.entity.B # getattr(entity.entity, "B")

Note: If you don't provide fields in search, you will only get ids and distances.

Search entities in a partition

# Search entities in a partition `tag01`
>>>'test01', dsl=dsl, partition_tags=['tag01'])

Note: If you do not specify partition_tags, Milvus searches the whole collection.

Close client

>>> client.close()


I'm getting random "socket operation on non-socket" errors from gRPC when connecting to Milvus from an application served on Gunicorn

Make sure to set the environment variable GRPC_ENABLE_FORK_SUPPORT=1. For reference, see

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pymilvus, version 0.3.0
Filename, size File type Python version Upload date Hashes
Filename, size pymilvus-0.3.0-py3-none-any.whl (56.6 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size pymilvus-0.3.0.tar.gz (49.1 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page