Python Sdk for Milvus
Project description
Milvus Python SDK -- pymilvus
Using Milvus python sdk for Milvus Download
Pymilvus only supports python >= 3.4
, is fully tested under 3.4, 3.5, 3.6, 3.7.
Pymilvus can be downloaded via pip
. If no use, try pip3
$ pip install pymilvus
Different versions of Milvus and lowest/highest pymilvus version supported accordingly
Milvus version | Lowest pymilvus version supported | Highest pymivus version supported |
---|---|---|
0.3.0 | - | 0.1.13 |
0.3.1 | 0.1.14 | 0.1.25 |
0.4.0 | 0.2.0 | - |
You can download a specific version by:
$ pip install pymilvus==0.2.0
If you want to upgrade pymilvus
to newest version
$ pip install --upgrade pymilvus
Import
from milvus import Milvus, IndexType, MetricType, Status
Getting started
Initial a Milvus
instance and connect
to the sever
>>> milvus = Milvus()
>>> milvus.connect(host='SERVER-HOST', port='SERVER-PORT')
Status(code=0, message='Successfully connected!')
Once successfully connected, you can get the version of server
>>> milvus.server_version()
(Status(code=0, message='Success'), 0.4.0) # this is example version, the real version may vary
Add a new table
First set param
>>> param = {'table_name':'test01', 'dimension':256, 'index_file_size':1024, 'metric_type':MetricType.L2}
Then create table
>>> milvus.create_table(param)
Status(code=0, message='Create table successfully!')
Describe the table we just created
>>> milvus.describe_table('test01')
(Status(code=0, message='Describe table successfully!'), TableSchema(table_name='test01', dimension=256, index_file_size=1024, metric_type=<MetricType: L2>))
Add vectors into table test01
First create 20 vectors of 256-dimension.
- Note that
random
andpprint
we used here is for creating fake vectors data and pretty print, you may not need them in your project
>>> import random
>>> from pprint import pprint
>>> dim = 256 # Dimension of the vector
# Initialize 20 vectors of 256-dimension
>>> vectors = [[random.random() for _ in range(dim)] for _ in range(20)]
Then add vectors into table test01
>>> status, ids = milvus.add_vectors(table_name='test01', records=vectors)
>>> print(status)
Status(code=0, message='Success')
>>> pprint(ids) # List of ids returned
23455321135511233
12245748929023489
...
You can also specify vectors id
>>> vector_ids = [i for i in range(20)]
>>> status, ids = milvus.add_vectors(table_name='test01', records=vectors, ids=vector_ids)
>>> pprint(ids)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
Get vectors num
>>> milvus.get_table_row_count('test01')
(Status(code=0, message='Success!'), 20)
Load vectors into memory
>>> milvus.preload_table('test01')
Status(code=0, message='')
Create index
>>> index_param = {'index_type': IndexType.IVFLAT, 'nlist': 16384}
>>> milvus.create_index('test01', index_param)
Status(code=0, message='Build index successfully!')
Then show index information
>>> client.describe_index('test01')
(Status(code=0, message='Successfully'), IndexParam(_table_name='test01', _index_type=<IndexType: IVFLAT>, _nlist=16384))
Search vectors
# create 5 vectors of 256-dimension
>>> q_records = [[random.random() for _ in range(dim)] for _ in range(5)]
Then get results
>>> status, results = milvus.search_vectors(table_name='test01', query_records=q_records, top_k=1, nprobe=16)
>>> print(status)
Status(code=0, message='Search vectors successfully!')
>>> pprint(results) # Searched top_k vectors
[
[QueryResult(id=0, distance=34.85963439941406)],
[QueryResult(id=0, distance=36.73900604248047)],
[QueryResult(id=0, distance=34.35655975341797)],
[QueryResult(id=18, distance=36.19701385498047)],
[QueryResult(id=5, distance=39.11549758911133)]
]
Drop index
>>> milvus.drop_index('test01')
Status(code=0, message='')
Delete vectors by date range
>>> milvus.delete_vectors_by_range('test01', '2019-06-01', '2020-01-01')
Status(code=0, message='')
Delete the table we just created
>>> milvus.delete_table(table_name='test01')
Status(code=0, message='Success')
Disconnect with the server
>>> milvus.disconnect()
Status(code=0, message='Success')
Example python
There are some small examples in examples/
, you can find more guide there.
Build docs
$ sphinx-build -b html doc/en/ doc/en/build
If you encounter any problems or bugs, please open new issues
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pymilvus-0.2.0.tar.gz
.
File metadata
- Download URL: pymilvus-0.2.0.tar.gz
- Upload date:
- Size: 22.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.34.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
dbd094cc4a87db44739adac7b66366248d166d8f9e881d73fa51919a10fc65bf
|
|
MD5 |
cd2fd23a71526491a2e3f6633ec30913
|
|
BLAKE2b-256 |
357fe7c934e6d9e89e7f8e1552c21ff1cdde741a1a1047acf585f7b74f31b499
|
File details
Details for the file pymilvus-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: pymilvus-0.2.0-py3-none-any.whl
- Upload date:
- Size: 28.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.34.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
2362d011e33322b1029dea870b8441a94a8860d4277bb1a7ad5de9fa8b3ba1bf
|
|
MD5 |
ba73af0d92531d3712872da83c81c4e8
|
|
BLAKE2b-256 |
dcc1288e3bc7481e969cf71c8a53fca6c6485439aea2c31517385fc0e84f9b4d
|