Skip to main content

Python Sdk for Milvus

Project description

Milvus Python SDK -- pymilvus

version license

Using Milvus python sdk for Milvus Download

Pymilvus only supports python >= 3.5, is fully tested under 3.5, 3.6, 3.7.

Pymilvus can be downloaded via pip. If no use, try pip3

$ pip install pymilvus

Different versions of Milvus and lowest/highest pymilvus version supported accordingly

Milvus version Lowest pymilvus version supported Highest pymivus version supported
0.3.0 - 0.1.13
0.3.1 0.1.14 0.1.25
0.4.0 0.2.0 0.2.2
0.5.0 0.2.3 -

You can download a specific version by:

$ pip install pymilvus==0.2.3

If you want to upgrade pymilvus to newest version

$ pip install --upgrade pymilvus

Import

from milvus import Milvus, IndexType, MetricType, Status

Getting started

Initial a Milvus instance and connect to the sever

>>> milvus = Milvus()

>>> milvus.connect(host='localhost', port='19530')
Status(code=0, message='Successfully connected! localhost:19530')

Once successfully connected, you can get the version of server

>>> milvus.server_version()
(Status(code=0, message='Success'), '0.5.0')  # this is example version, the real version may vary

Add a new table

First set param

>>> dim = 32  # Dimension of the vector
>>> param = {'table_name':'test01', 'dimension':dim, 'index_file_size':1024, 'metric_type':MetricType.L2}

Then create table

>>> milvus.create_table(param)
Status(code=0, message='Create table successfully!')

Describe the table we just created

>>> milvus.describe_table('test01')
(Status(code=0, message='Describe table successfully!'), TableSchema(table_name='test01', dimension=32, index_file_size=1024, metric_type=<MetricType: L2>))

Add vectors into table test01

First create 20 vectors of 256-dimension.

  • Note that random and pprint we used here is for creating fake vectors data and pretty print, you may not need them in your project
>>> import random
>>> from pprint import pprint

# Initialize 20 vectors of 256-dimension
>>> vectors = [[random.random() for _ in range(dim)] for _ in range(20)]

Then add vectors into table test01

>>> status, ids = milvus.add_vectors(table_name='test01', records=vectors)
>>> print(status)
Status(code=0, message='Add vectors successfully!')
>>> pprint(ids) # List of ids returned
[1571123848227800000,
 1571123848227800001,
    ...........
 1571123848227800018,
 1571123848227800019]

You can also specify vectors id

>>> vector_ids = [i for i in range(20)]
>>> status, ids = milvus.add_vectors(table_name='test01', records=vectors, ids=vector_ids)
>>> pprint(ids)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Get vectors num

>>> milvus.get_table_row_count('test01')
(Status(code=0, message='Success!'), 20)

Load vectors into memory

>>> milvus.preload_table('test01')
Status(code=0, message='')

Create index

>>> index_param = {'index_type': IndexType.FLAT, 'nlist': 128}
>>> milvus.create_index('test01', index_param)
Status(code=0, message='Build index successfully!')

Then show index information

>>> milvus.describe_index('test01')
(Status(code=0, message='Successfully'), IndexParam(_table_name='test01', _index_type=<IndexType: FLAT>, _nlist=128))

Search vectors

# create 5 vectors of 256-dimension
>>> q_records = [[random.random() for _ in range(dim)] for _ in range(5)]

Then get results

>>> status, results = milvus.search_vectors(table_name='test01', query_records=q_records, top_k=1, nprobe=16)
>>> print(status)
Status(code=0, message='Search vectors successfully!')
>>> pprint(results) # Searched top_k vectors
[
[(id:15, distance:2.855304718017578),
 (id:16, distance:3.040700674057007)],
[(id:11, distance:3.673950433731079),
 (id:15, distance:4.183730602264404)],
      ........
[(id:6, distance:4.065953254699707),
 (id:1, distance:4.149323463439941)]
]

Drop index

>>> milvus.drop_index('test01')
Status(code=0, message='')

Delete the table we just created

>>> milvus.delete_table(table_name='test01')
Status(code=0, message='Delete table successfully!')

Disconnect with the server

>>> milvus.disconnect()
Status(code=0, message='Disconnect successfully')

Example python

There are some small examples in examples/, you can find more guide there.

Build docs

$ sphinx-build -b html doc/en/ doc/en/build

If you encounter any problems or bugs, please open new issues

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymilvus-0.2.3.tar.gz (22.6 kB view hashes)

Uploaded Source

Built Distribution

pymilvus-0.2.3-py3-none-any.whl (29.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page