Skip to main content

A python package that splits large files into smaller chunks.

Project description

Tutorial using the pysplit package

pysplit is a Python package used for splitting large files into smaller chunks.

Currently the default chunk size is 100MB. This size was chosen to work around GitHub's upload file size limit.

Install the latest version of pysplitter

Run the cell below to ensure you have the latest version of pysplitter installed on your machine.

# !pip install --upgrade pysplitter

Import required packages

import pysplitter as pysp
import numpy as np

Import helpful packages

import sys
import os

Create a numpy array that will exceed 100MB when saved to disk.

The numeric values of the data are not important. Random values were used for convenience only.

dim = 250
num = int(dim * dim * dim)
x = np.random.normal(size=num).reshape(dim, dim, dim)
x.shape
(250, 250, 250)

Save numpy array to disk and list directory contents

np.save('x.npy', x)
os.listdir()
['.ipynb_checkpoints',
 '1-split-unsplit-tutorial.ipynb',
 'x.npy']

Display size of file on disk

size = os.path.getsize('x.npy')
print(f'{size / 1e6} MB')
125.000128 MB

As many people may know, GitHub will not allow files exceeding 100 MB to be uploaded.

Use the commands below to split the original (and too large) file into multiple .split files.

Currently the default split size is <= 100 MB, but this may become a variable paramter in furture distributions.

os.listdir()
['.ipynb_checkpoints',
 '1-split-unsplit-tutorial.ipynb',
 'x(unsplit).npy',
 'x.npy']
src = 'x.npy'
pysp.split(src)
2 file(s) written.

Check file size of the two chunks that were just written.

os.listdir()
['.ipynb_checkpoints',
 '1-split-unsplit-tutorial.ipynb',
 'x(unsplit).npy',
 'x.npy',
 'x0000.npy.split',
 'x0001.npy.split']
print(os.path.getsize('x0000.npy.split') / 1e6, 'MB')
100.0 MB
print(os.path.getsize('x0001.npy.split') / 1e6, 'MB')
25.000128 MB

As is clearly shown from the output of the above cells, both chunks are <= 100MB. This means that this data can now pushed to GitHub as any other file would.

Recombine the data chunks back into a single file

search_pattern = './x*.split'
dst = '.'
pysp.unsplit(search_pattern, dst, validate=True, orig_src=src)
File reconstructed without loss: True
os.listdir()
['.ipynb_checkpoints',
 '1-split-unsplit-tutorial.ipynb',
 'x(unsplit).npy',
 'x.npy',
 'x0000.npy.split',
 'x0001.npy.split']
x_unsplit = np.load('x(unsplit).npy')
x_unsplit.shape
(250, 250, 250)

Show that the manipulated data x_unsplit is the same as the original data x.

np.allclose(x, x_unsplit)
True

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysplitter-0.0.12.tar.gz (3.3 kB view details)

Uploaded Source

Built Distribution

pysplitter-0.0.12-py3-none-any.whl (4.2 kB view details)

Uploaded Python 3

File details

Details for the file pysplitter-0.0.12.tar.gz.

File metadata

  • Download URL: pysplitter-0.0.12.tar.gz
  • Upload date:
  • Size: 3.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200622 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for pysplitter-0.0.12.tar.gz
Algorithm Hash digest
SHA256 aa2cd00dfdd302697f92acd36b2f668c82f169317106585f9695c7b79f375066
MD5 8de41b34290aa4bee6f2dc2b6f93fe7c
BLAKE2b-256 5b03340382573c85a50b1b7a1a7fcb14bdd865cb99e5d72311bce91c269f6c47

See more details on using hashes here.

File details

Details for the file pysplitter-0.0.12-py3-none-any.whl.

File metadata

  • Download URL: pysplitter-0.0.12-py3-none-any.whl
  • Upload date:
  • Size: 4.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200622 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for pysplitter-0.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 61884c1b07e90031d795e15a7539c1c93f2918701921312d34e855fef48e1cf4
MD5 73b89cc446be25967ba497713ee8b798
BLAKE2b-256 1c858de686ee43cd8aaf34bf9ef060b1bc53b7449d61bc8e50a67e805d9aff2a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page