Skip to main content

A python package that splits large files into smaller chunks.

Project description

Tutorial using the pysplit package

pysplit is a Python package used for splitting large files into smaller chunks.

Currently the default chunk size is 100MB. This size was chosen to work around GitHub's upload file size limit.

Install the latest version of pysplitter

Run the cell below to ensure you have the latest version of pysplitter installed on your machine.

# !pip install --upgrade _pysplitter

Import required packages

import pysplitter as pysp
import numpy as np

Import helpful packages

import sys
import os

Create a numpy array that will exceed 100MB when saved to disk.

The numeric values of the data are not important. Random values were used for convenience only.

dim = 250
num = int(dim * dim * dim)
x = np.random.normal(size=num).reshape(dim, dim, dim)
x.shape
(250, 250, 250)

Save numpy array to disk and list directory contents

np.save('x.npy', x)
os.listdir()
['.ipynb_checkpoints',
 '1-split-unsplit-tutorial.ipynb',
 'x.npy']

Display size of file on disk

size = os.path.getsize('x.npy')
print(f'{size / 1e6} MB')
125.000128 MB

As many people may know, GitHub will not allow files exceeding 100 MB to be uploaded.

Use the commands below to split the original (and too large) file into multiple .split files.

Currently the default split size is <= 100 MB, but this may become a variable paramter in furture distributions.

os.listdir()
['.ipynb_checkpoints',
 '1-split-unsplit-tutorial.ipynb',
 'x(unsplit).npy',
 'x.npy']
src = 'x.npy'
pysp.split(src)
2 file(s) written.

Check file size of the two chunks that were just written.

os.listdir()
['.ipynb_checkpoints',
 '1-split-unsplit-tutorial.ipynb',
 'x(unsplit).npy',
 'x.npy',
 'x0000.npy.split',
 'x0001.npy.split']
print(os.path.getsize('x0000.npy.split') / 1e6, 'MB')
100.0 MB
print(os.path.getsize('x0001.npy.split') / 1e6, 'MB')
25.000128 MB

As is clearly shown from the output of the above cells, both chunks are <= 100MB. This means that this data can now pushed to GitHub as any other file would.

Recombine the data chunks back into a single file

search_pattern = './x*.split'
dst = '.'
pysp.unsplit(search_pattern, dst, validate=True, orig_src=src)
File reconstructed without loss: True
os.listdir()
['.ipynb_checkpoints',
 '1-split-unsplit-tutorial.ipynb',
 'x(unsplit).npy',
 'x.npy',
 'x0000.npy.split',
 'x0001.npy.split']
x_unsplit = np.load('x(unsplit).npy')
x_unsplit.shape
(250, 250, 250)

Show that the manipulated data x_unsplit is the same as the original data x.

np.allclose(x, x_unsplit)
True

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysplitter-0.0.16.tar.gz (3.4 kB view details)

Uploaded Source

Built Distribution

pysplitter-0.0.16-py3-none-any.whl (4.3 kB view details)

Uploaded Python 3

File details

Details for the file pysplitter-0.0.16.tar.gz.

File metadata

  • Download URL: pysplitter-0.0.16.tar.gz
  • Upload date:
  • Size: 3.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200622 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for pysplitter-0.0.16.tar.gz
Algorithm Hash digest
SHA256 bbc4bed7a95bc88821cf062ebbc0549a28951efcb854c74cf32aa94a86e891b1
MD5 c15216b4b038e3be08a152d87693a66c
BLAKE2b-256 3f47018bd22601086851d6aa886e5b741637af613ff0b4aaaf28787b83f44c56

See more details on using hashes here.

File details

Details for the file pysplitter-0.0.16-py3-none-any.whl.

File metadata

  • Download URL: pysplitter-0.0.16-py3-none-any.whl
  • Upload date:
  • Size: 4.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200622 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for pysplitter-0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 cad2b0fee7da15de944d656707e7bf1dfa50a3018b0a534d5fdde182f13a94f5
MD5 80cf407eb9c1158a904d35d50c3d38d5
BLAKE2b-256 10e63948d6d0ed8dfa97abd4f7ca69f2eed18a79df865f9a1b5c2195171630d4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page