Skip to main content

Python package for raphtory, a temporal graph library

Project description


Raphtory

Test and Build Latest Release Issues Crates.io PyPI PyPI Downloads Launch Notebook

🌍 Website   📒 Documentation   Pometry   🧙Tutorial   🐛 Report a Bug   Join Slack


Raphtory is an in-memory vectorised graph database written in Rust with friendly Python APIs on top. It is blazingly fast, scales to hundreds of millions of edges on your laptop, and can be dropped into your existing pipelines with a simple pip install raphtory.

It can be ran embedded or as a server instance using GraphQL, supports time traveling, full-text search, multilayer modelling, and advanced analytics beyond simple querying like automatic risk detection, dynamic scoring, and temporal motifs. With the subscription model, Raphtory also supports out-of-memory (on-disk) scaling with no performance loss!

If you wish to contribute, check out the open list of issues, bounty board or hit us up directly on slack. Successful contributions will be reward with swizzling swag!

Installing Raphtory

Raphtory is available for Python and Rust.

For python you must be using version 3.8 or higher and can install via pip:

pip install raphtory

For Rust, Raphtory is hosted on crates for Rust version 1.77 or higher and can be included in your project via cargo add:

cargo add raphtory

Running a basic example

Below is a small example of how Raphtory looks and feels when using our Python APIs. If you like what you see, you can dive into a full tutorial here.

from raphtory import Graph
from raphtory import algorithms as algo
import pandas as pd

# Create a new graph
graph = Graph()

# Add some data to your graph
graph.add_node(timestamp=1, id="Alice")
graph.add_node(timestamp=1, id="Bob")
graph.add_node(timestamp=1, id="Charlie")
graph.add_edge(timestamp=2, src="Bob", dst="Charlie", properties={"weight": 5.0})
graph.add_edge(timestamp=3, src="Alice", dst="Bob", properties={"weight": 10.0})
graph.add_edge(timestamp=3, src="Bob", dst="Charlie", properties={"weight": -15.0})

# Check the number of unique nodes/edges in the graph and earliest/latest time seen.
print(graph)

results = [["earliest_time", "name", "out_degree", "in_degree"]]

# Collect some simple node metrics Ran across the history of your graph with a rolling window
for graph_view in graph.rolling(window=1):
    for v in graph_view.nodes:
        results.append(
            [graph_view.earliest_time, v.name, v.out_degree(), v.in_degree()]
        )

# Print the results
print(pd.DataFrame(results[1:], columns=results[0]))

# Grab an edge, explore the history of its 'weight'
cb_edge = graph.edge("Bob", "Charlie")
weight_history = cb_edge.properties.temporal.get("weight").items()
print(
    "The edge between Bob and Charlie has the following weight history:", weight_history
)

# Compare this weight between time 2 and time 3
weight_change = cb_edge.at(2)["weight"] - cb_edge.at(3)["weight"]
print(
    "The weight of the edge between Bob and Charlie has changed by",
    weight_change,
    "pts",
)

# Run pagerank and ask for the top ranked node
top_node = algo.pagerank(graph).top_k(5).max_item()
print(
    "The most important node in the graph is",
    top_node[0].name,
    "with a score of",
    top_node[1],
)

Output:

Graph(number_of_edges=2, number_of_nodes=3, earliest_time=1, latest_time=3)

|   | earliest_time | name    | out_degree | in_degree |
|---|---------------|---------|------------|-----------|
| 0 | 1             | Alice   | 0          | 0         |
| 1 | 1             | Bob     | 0          | 0         |
| 2 | 1             | Charlie | 0          | 0         |
| 3 | 2             | Bob     | 1          | 0         |
| 4 | 2             | Charlie | 0          | 1         |
| 5 | 3             | Alice   | 1          | 0         |
| 6 | 3             | Bob     | 1          | 1         |
| 7 | 3             | Charlie | 0          | 1         |

The edge between Bob and Charlie has the following weight history: [(2, 5.0), (3, -15.0)]

The weight of the edge between Bob and Charlie has changed by 20.0 pts

The top node in the graph is Charlie with a score of 0.4744116163405977

GraphQL

As part of the python APIs you can host your data within Raphtory's GraphQL server. This makes it super easy to integrate your graphy analytics with web applications.

Below is a small example creating a graph, running a server hosting this data, querying it with our GraphQL client, or visualising your data in the UI.

from raphtory import Graph
from raphtory.graphql import GraphServer
import pandas as pd
import os

# URL for lord of the rings data from our main tutorial
url = "https://raw.githubusercontent.com/Raphtory/Data/main/lotr-with-header.csv"
df = pd.read_csv(url)

# Load the lord of the rings graph from the dataframe
graph = Graph()
graph.load_edges_from_pandas(df,"time","src_id","dst_id")

#Create a working_dir for your server and save your graph into it 
#You can save any number of graphs here or create them via the server ones its running
os.makedirs("graphs/", exist_ok=True)
graph.save_to_file("graphs/lotr_graph")

# Launch the server and get a client to it.
server = GraphServer(work_dir="graphs/").start()
client = server.get_client()

#Run a basic query to get the names of the characters + their degree
results = client.query("""{
             graph(path: "lotr_graph") {
                 nodes {
                    list{
                        name
                        degree
                       }   
                    }
                 }
             }""")

print(results)

Output:

Loading edges: 100%|██████████████| 2.65K/2.65K [00:00<00:00, 984Kit/s]
Playground: http://localhost:1736
{'graph': 
    {'nodes': 
        [{'name': 'Gandalf', 'degree': 49}, 
         {'name': 'Elrond', 'degree': 32}, 
         {'name': 'Frodo', 'degree': 51}, 
         {'name': 'Bilbo', 'degree': 21}, 
         ...
        ]
    }
}

GraphQL Playground

When you host a Raphtory GraphQL server you get a web playground bundled in, accessible on the same port within your browser (defaulting to 1736). Here you can experiment with queries on your graphs and explore the schema. An example of the playground can be seen below, running the same query as in the python example above.

GraphQL Playground

Graph Visualisation and Explorations

Once the GraphQL server is running, you can access the UI directly. If the server is hosted on port 1736, the UI will be available at http://localhost:1736. The UI allows you to search for data in Raphtory, explore connections, and visualise the graph effortlessly.

Graph User Interface

Getting started

To get you up and running with Raphtory we provide a full set of tutorials on the Raphtory website:

If API documentation is more your thing, you can dive straight in here!

Community

Join the growing community of open-source enthusiasts using Raphtory to power their graph analysis!

  • Follow Slack for the latest Raphtory news and development

  • Join our Slack to chat with us and get answers to your questions!

Contributors

Bounty board

Raphtory is currently offering rewards for contributions, such as new features or algorithms. Contributors will receive swag and prizes!

To get started, check out our list of desired algorithms which include some low hanging fruit (🍇) that are easy to implement.

Benchmarks

We host a page which triggers and saves the result of two benchmarks upon every push to the master branch. View this here

License

Raphtory is licensed under the terms of the GNU General Public License v3.0 (check out our LICENSE file).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

raphtory-0.15.1-cp313-cp313-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.13Windows x86-64

raphtory-0.15.1-cp313-cp313-manylinux_2_28_x86_64.whl (28.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

raphtory-0.15.1-cp313-cp313-manylinux_2_28_aarch64.whl (27.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

raphtory-0.15.1-cp313-cp313-macosx_11_0_arm64.whl (25.3 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

raphtory-0.15.1-cp313-cp313-macosx_10_12_x86_64.whl (27.0 MB view details)

Uploaded CPython 3.13macOS 10.12+ x86-64

raphtory-0.15.1-cp312-cp312-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.12Windows x86-64

raphtory-0.15.1-cp312-cp312-manylinux_2_28_x86_64.whl (28.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

raphtory-0.15.1-cp312-cp312-manylinux_2_28_aarch64.whl (27.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

raphtory-0.15.1-cp312-cp312-macosx_11_0_arm64.whl (25.4 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

raphtory-0.15.1-cp312-cp312-macosx_10_12_x86_64.whl (27.0 MB view details)

Uploaded CPython 3.12macOS 10.12+ x86-64

raphtory-0.15.1-cp311-cp311-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.11Windows x86-64

raphtory-0.15.1-cp311-cp311-manylinux_2_28_x86_64.whl (28.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

raphtory-0.15.1-cp311-cp311-manylinux_2_28_aarch64.whl (27.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

raphtory-0.15.1-cp311-cp311-macosx_11_0_arm64.whl (25.4 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

raphtory-0.15.1-cp311-cp311-macosx_10_12_x86_64.whl (27.0 MB view details)

Uploaded CPython 3.11macOS 10.12+ x86-64

raphtory-0.15.1-cp310-cp310-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.10Windows x86-64

raphtory-0.15.1-cp310-cp310-manylinux_2_28_x86_64.whl (28.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

raphtory-0.15.1-cp310-cp310-manylinux_2_28_aarch64.whl (27.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

raphtory-0.15.1-cp310-cp310-macosx_11_0_arm64.whl (25.4 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

raphtory-0.15.1-cp310-cp310-macosx_10_12_x86_64.whl (27.0 MB view details)

Uploaded CPython 3.10macOS 10.12+ x86-64

raphtory-0.15.1-cp39-cp39-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.9Windows x86-64

raphtory-0.15.1-cp39-cp39-manylinux_2_28_x86_64.whl (28.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

raphtory-0.15.1-cp39-cp39-manylinux_2_28_aarch64.whl (27.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ ARM64

raphtory-0.15.1-cp39-cp39-macosx_11_0_arm64.whl (25.4 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

raphtory-0.15.1-cp39-cp39-macosx_10_12_x86_64.whl (27.0 MB view details)

Uploaded CPython 3.9macOS 10.12+ x86-64

File details

Details for the file raphtory-0.15.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.15.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 23.7 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for raphtory-0.15.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 3c5e9464dc42dcbf836b8fc23c69b9049f9798c79bc54ea60d8a0fb313588aeb
MD5 9375b38de6c555da3e6b765c4a05f043
BLAKE2b-256 344385ceabf598de18dedca82a1f1622edfca21f327ca6a796360d15a5f923fb

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7a62e9284e4426d0e68bfe6498f6c7da3e3cf23e2120ab10f0b280d3a7da7081
MD5 ca6847d7894af8e039927071bc01f1f9
BLAKE2b-256 54999ed1954e73046b138e3893b8097befb9b6d5297a602bd3854de92bc90e5a

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8c73ab1851eb5ce3d8825127ed82be5142ec80f4c9555355ba28c7d3f4e88193
MD5 1fc36a3d72ff5d14325f7c7f01375f77
BLAKE2b-256 fa505bdd6f39a7ae1fd0eba0fca9497a319cb7867b6a5124c25c08530d35006a

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7ef141986626eeb697c435a428df529a786f17cd915e64d983894d97a1997c20
MD5 08e45fda9c060be55368424e507ea456
BLAKE2b-256 ca972119cafcc53d27d883cf5bee85e1fd4629529ee3f491fa5304f52eb81c24

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp313-cp313-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp313-cp313-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ab96e029e69f6d6a70ae7b832e6c726484c32ee2da66e35efe434e731ad12216
MD5 f3811b69f3fb9c58ec0ba92554cd70de
BLAKE2b-256 2dd6e53823552a967ee71f3ac858fa585e9d7ede7fc36022ec709aea2427a297

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.15.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 23.7 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for raphtory-0.15.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 83abfd7ab799594fd65702a4bb65b3dd2be9fdb78126b65583e1fe6b42150ab3
MD5 6b554052b5ddbbcdd3014d4ba38b7318
BLAKE2b-256 8b9f4129b37088d14c083071ddceae8c3093089a725f2e193dd83d3f28f990d6

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b07e94434bda6c32703a6dd89b0ef0de8422fafb9f4b5b344865acc8c5c622f2
MD5 da794042ee5201a5c94c1d789bbfae77
BLAKE2b-256 6558dfc611c673d48470bfbfc0407fabc693ea8dd006366b5aeb92e83fe1f940

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d907c75db37251e463a1db47d63209ff9cc3829a0b52c477d7c1845be415a6a2
MD5 5cd92f5a703d03111b1e09b286799a1c
BLAKE2b-256 0e45844cc4fc28b21336eccb56aa288e13ac8d414bda7cd17d5d0ba217ede05d

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df32cddbb380a7f1b23bcf39ee17d576710a7d3bc7ea17044a8d86c832097233
MD5 433bed68c158aa02905596d4d31349bb
BLAKE2b-256 5413ab8614f5d73c2727e8e085588a5a8983e32bba6b688205fa189efa57b697

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 314fedf9fc6d23d12eaaeebde5e81b4cd40b1051c2891abb7799e62fecbd827a
MD5 54bf3a17236f2a91786b1f0ae560f2f4
BLAKE2b-256 b64bc8c733e3a877eef97462efc6ac9ca4c24d7d90cea0b718aec4d96bf6262f

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.15.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 23.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for raphtory-0.15.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d0599001bd157cb3c809d363e7450c00df83a5509f5a23278eee046913fefb59
MD5 c4b66a104f0928cb7e95f8cdb87e9472
BLAKE2b-256 a6f43669c637dd1fabe1946619104f72d23f22c40816832fb308ed5e0c66b5eb

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 36d76fec417219339e40ffcb7b8cd45940135b17cbf01b57b1da015c4a9cb54b
MD5 48b17354d76a74f2b7b0b3f609858cf5
BLAKE2b-256 130f02845378fce8add9e5891d7edb0c52261e8d817bbc7007145073629c2f33

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 fa223793cfee9697c1560cb96e9f2600b5861b069b3f12aff2073409a838f4aa
MD5 ad37a289980adf8cd0e854b9bdf2d0fe
BLAKE2b-256 7fae65ef070e66f637a4f6db6f7a3ae2454e9716fca699de177629eb23700434

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bfc4844c2e56bee467cad960b9715a40feb2b5dbcf546b2721ab9ea0a9df8704
MD5 0bb785d98ce5789de825ccc9409b6084
BLAKE2b-256 e20091fc9a617acf3aadd56442727f34cdaf4aadb52693f1fd0e2c56d578f761

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 42cff50aac3faf122b57d2f60b40d3ac84d05243979e97ef2e373875eaf3dfb3
MD5 4b438f174035af43ffe2ceb0ba6f2e12
BLAKE2b-256 bed273ec50cad5d7ddadb5e1205e332434856c873224e7436e5db1c8b414b910

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.15.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 23.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for raphtory-0.15.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7a76328fde7aabbe1b2b82777d65dbabe50212de5c8ee5dcbca7464cb78f9f49
MD5 20ac284802f2495e60be020b59530686
BLAKE2b-256 dd3d8fa1167d553827cd72018958d6ca9af0c20ffa6491d9a6d06ca9cb703c5e

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6fad0154af3980e90ede459260f604d05a0059b32261252767c0022f90d4a696
MD5 9373d2c934679d1c88f7f58de48e1bb5
BLAKE2b-256 af0649f69df8e02c51d8094b7a2b82f793e847cd9e960e467e4847744bf947c1

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 88807c821ae4b89d5b8a4682656b6ee95ff5d49ac31366d4cbd2a4a6928abe33
MD5 7043f82b19635b07d3c1a88260d267b7
BLAKE2b-256 7a37935dc2b4334f8a219127b9cb630cde974f34b4e75f0289803303e34cd323

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a2e8018bc19363de4cdae919b646d72ef9e253043e75908658727b6f65bd6dc9
MD5 6d049f93b37860c6d0021de89a80aed4
BLAKE2b-256 c8f704695122bfeed8a473f0c6908e567f72df1db17709a9fed7b85f65efa215

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 44a705ea1243e7ea41fe4bbcd37724256b213ecc77ff8faf408d09d141f98f85
MD5 7e4fa8e107fbf7c7600b8d69a7dc2de3
BLAKE2b-256 d26708c90aa1bb6907bba1fc3a8847f2f6dd10416191a96780b6dac11e8a9b54

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.15.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 23.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for raphtory-0.15.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 167972df7ff7047cdc4c39836938f8a06e98cada08aaf07b178dac380a573182
MD5 75d6f3d1629f46575803f8f281b44ab8
BLAKE2b-256 75746d2089f58062af4cc7c4ab2aaee5fd6a447449a118cbcf4aab7f9fe0a737

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6f42f6f52b3032e43a823fee8a46d51fc2da4a095bed83b9e18c4c91584d9fe1
MD5 2cb9f90642a8dba62e0d0545fdeb0182
BLAKE2b-256 d8192cfe7ca779a019b055ff03e79370e451b5cbb55ae10d66d65d4a8eb8017f

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e53eea96cabbc54d51494b5813c6ec114dab186b92d26e690653d39c508c034f
MD5 bab722dbe27ecd638aef2ff4398ca2bc
BLAKE2b-256 a4011fe6da4af1a995b54375c14281c670e37c14c68867f4dc1eebf65db4718e

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 57fcd9ab2a2a61d3c302d238d53bb05db322781e875c84735e21807bd573c702
MD5 6cc40c45a52ff7c24edfefe50196948b
BLAKE2b-256 3a7d9efb56191e42032cc27f1247f384b686a6fcd9dc5c791c802269bcee98e1

See more details on using hashes here.

File details

Details for the file raphtory-0.15.1-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.15.1-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 aef8cdc95284e7f63f3325814423e57b937f8f2b32169ceb2df6614ab8459e6b
MD5 022ee525f18182e0dec004a1bf619ed3
BLAKE2b-256 ef52a995c21c2d844e849dc9158d899a6f04f46513af5d127be3288c43d39b5f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page