Skip to main content

Python package for raphtory, a temporal graph library

Project description


Raphtory

Test and Build Latest Release Issues Crates.io PyPI PyPI Downloads Launch Notebook

🌍 Website   📒 Documentation   Pometry   🧙Tutorial   🐛 Report a Bug   Join Slack


Raphtory is an in-memory vectorised graph database written in Rust with friendly Python APIs on top. It is blazingly fast, scales to hundreds of millions of edges on your laptop, and can be dropped into your existing pipelines with a simple pip install raphtory.

It supports time traveling, full-text search, multilayer modelling, and advanced analytics beyond simple querying like automatic risk detection, dynamic scoring, and temporal motifs.

If you wish to contribute, check out the open list of issues, bounty board or hit us up directly on slack. Successful contributions will be reward with swizzling swag!

Installing Raphtory

Raphtory is available for Python and Rust.

For python you must be using version 3.8 or higher and can install via pip:

pip install raphtory

For Rust, Raphtory is hosted on crates for Rust version 1.77 or higher and can be included in your project via cargo add:

cargo add raphtory

Running a basic example

Below is a small example of how Raphtory looks and feels when using our Python APIs. If you like what you see, you can dive into a full tutorial here.

from raphtory import Graph
from raphtory import algorithms as algo
import pandas as pd

# Create a new graph
graph = Graph()

# Add some data to your graph
graph.add_node(timestamp=1, id="Alice")
graph.add_node(timestamp=1, id="Bob")
graph.add_node(timestamp=1, id="Charlie")
graph.add_edge(timestamp=2, src="Bob", dst="Charlie", properties={"weight": 5.0})
graph.add_edge(timestamp=3, src="Alice", dst="Bob", properties={"weight": 10.0})
graph.add_edge(timestamp=3, src="Bob", dst="Charlie", properties={"weight": -15.0})

# Check the number of unique nodes/edges in the graph and earliest/latest time seen.
print(graph)

results = [["earliest_time", "name", "out_degree", "in_degree"]]

# Collect some simple node metrics Ran across the history of your graph with a rolling window
for graph_view in graph.rolling(window=1):
    for v in graph_view.nodes:
        results.append(
            [graph_view.earliest_time, v.name, v.out_degree(), v.in_degree()]
        )

# Print the results
print(pd.DataFrame(results[1:], columns=results[0]))

# Grab an edge, explore the history of its 'weight'
cb_edge = graph.edge("Bob", "Charlie")
weight_history = cb_edge.properties.temporal.get("weight").items()
print(
    "The edge between Bob and Charlie has the following weight history:", weight_history
)

# Compare this weight between time 2 and time 3
weight_change = cb_edge.at(2)["weight"] - cb_edge.at(3)["weight"]
print(
    "The weight of the edge between Bob and Charlie has changed by",
    weight_change,
    "pts",
)

# Run pagerank and ask for the top ranked node
top_node = algo.pagerank(graph).top_k(1)
print(
    "The most important node in the graph is",
    top_node[0][0],
    "with a score of",
    top_node[0][1],
)

Output:

Graph(number_of_edges=2, number_of_nodes=3, earliest_time=1, latest_time=3)

|   | earliest_time | name    | out_degree | in_degree |
|---|---------------|---------|------------|-----------|
| 0 | 1             | Alice   | 0          | 0         |
| 1 | 1             | Bob     | 0          | 0         |
| 2 | 1             | Charlie | 0          | 0         |
| 3 | 2             | Bob     | 1          | 0         |
| 4 | 2             | Charlie | 0          | 1         |
| 5 | 3             | Alice   | 1          | 0         |
| 6 | 3             | Bob     | 1          | 1         |
| 7 | 3             | Charlie | 0          | 1         |

The edge between Bob and Charlie has the following weight history: [(2, 5.0), (3, -15.0)]

The weight of the edge between Bob and Charlie has changed by 20.0 pts

The top node in the graph is Charlie with a score of 0.4744116163405977

GraphQL

As part of the python APIs you can host your data within Raphtory's GraphQL server. This makes it super easy to integrate your graphy analytics with web applications.

Below is a small example creating a graph, running a server hosting this data, and directly querying it with our GraphQL client.

from raphtory import Graph
from raphtory.graphql import GraphServer
import pandas as pd
import os

# URL for lord of the rings data from our main tutorial
url = "https://raw.githubusercontent.com/Raphtory/Data/main/lotr-with-header.csv"
df = pd.read_csv(url)

# Load the lord of the rings graph from the dataframe
graph = Graph()
graph.load_edges_from_pandas(df,"time","src_id","dst_id")

#Create a working_dir for your server and save your graph into it 
#You can save any number of graphs here or create them via the server ones its running
os.makedirs("graphs/", exist_ok=True)
graph.save_to_file("graphs/lotr_graph")

# Launch the server and get a client to it.
server = GraphServer(work_dir="graphs/").start()
client = server.get_client()

#Run a basic query to get the names of the characters + their degree
results = client.query("""{
             graph(path: "lotr_graph") {
                 nodes {
                    list{
                        name
                        degree
                       }   
                    }
                 }
             }""")

print(results)

Output:

Loading edges: 100%|██████████████| 2.65K/2.65K [00:00<00:00, 984Kit/s]
Playground: http://localhost:1736
{'graph': 
    {'nodes': 
        [{'name': 'Gandalf', 'degree': 49}, 
         {'name': 'Elrond', 'degree': 32}, 
         {'name': 'Frodo', 'degree': 51}, 
         {'name': 'Bilbo', 'degree': 21}, 
         ...
        ]
    }
}

GraphQL Playground

When you host a Raphtory GraphQL server you get a web playground bundled in, accessible on the same port within your browser (defaulting to 1736). Here you can experiment with queries on your graphs and explore the schema. An example of the playground can be seen below, running the same query as in the python example above.

GraphQL Playground

Getting started

To get you up and running with Raphtory we provide a full set of tutorials on the Raphtory website:

If API documentation is more your thing, you can dive straight in here!

Online notebook sandbox

Want to give this a go, but can't install? Check out Raphtory in action with our interactive Jupyter Notebooks! Just click the badge below to launch a Raphtory sandbox online, no installation needed.

Binder

Community

Join the growing community of open-source enthusiasts using Raphtory to power their graph analysis!

  • Follow Slack for the latest Raphtory news and development

  • Join our Slack to chat with us and get answers to your questions!

Contributors

Bounty board

Raphtory is currently offering rewards for contributions, such as new features or algorithms. Contributors will receive swag and prizes!

To get started, check out our list of desired algorithms which include some low hanging fruit (🍇) that are easy to implement.

Benchmarks

We host a page which triggers and saves the result of two benchmarks upon every push to the master branch. View this here

License

Raphtory is licensed under the terms of the GNU General Public License v3.0 (check out our LICENSE file).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

raphtory-0.11.0-cp312-none-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

raphtory-0.11.0-cp312-cp312-manylinux_2_28_x86_64.whl (18.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

raphtory-0.11.0-cp312-cp312-manylinux_2_28_aarch64.whl (18.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

raphtory-0.11.0-cp312-cp312-macosx_11_0_arm64.whl (15.3 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

raphtory-0.11.0-cp312-cp312-macosx_10_12_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

raphtory-0.11.0-cp311-none-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

raphtory-0.11.0-cp311-cp311-manylinux_2_28_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

raphtory-0.11.0-cp311-cp311-manylinux_2_28_aarch64.whl (18.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

raphtory-0.11.0-cp311-cp311-macosx_11_0_arm64.whl (15.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

raphtory-0.11.0-cp311-cp311-macosx_10_12_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

raphtory-0.11.0-cp310-none-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

raphtory-0.11.0-cp310-cp310-manylinux_2_28_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

raphtory-0.11.0-cp310-cp310-manylinux_2_28_aarch64.whl (18.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

raphtory-0.11.0-cp310-cp310-macosx_11_0_arm64.whl (15.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

raphtory-0.11.0-cp310-cp310-macosx_10_12_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

raphtory-0.11.0-cp39-none-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

raphtory-0.11.0-cp39-cp39-manylinux_2_28_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

raphtory-0.11.0-cp39-cp39-manylinux_2_28_aarch64.whl (18.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

raphtory-0.11.0-cp39-cp39-macosx_11_0_arm64.whl (15.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

raphtory-0.11.0-cp39-cp39-macosx_10_12_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

raphtory-0.11.0-cp38-none-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

raphtory-0.11.0-cp38-cp38-manylinux_2_28_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

raphtory-0.11.0-cp38-cp38-manylinux_2_28_aarch64.whl (18.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

raphtory-0.11.0-cp38-cp38-macosx_11_0_arm64.whl (15.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

raphtory-0.11.0-cp38-cp38-macosx_10_12_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file raphtory-0.11.0-cp312-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.11.0-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for raphtory-0.11.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 89ff7e42310db2dd43058d141d91d271c1a835c2ca0075bf5df0772a7c2cca9e
MD5 7ec8b676b6610d88060763d7c23736a1
BLAKE2b-256 f1bb24b1bab1df8d658fa375f95216116c46861c10a523a90f36cf01ddeec7fd

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dafa264f9e22a5b426985e07e40e669a7b0854e3a34338812f44637f2ef5fd48
MD5 466c9bd5384d46b5aa76d5e24bcc52c5
BLAKE2b-256 163447f93d3dcbb9b23aa5ff80955f3a1b52d01cd38146d9e6f063e467c13063

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bade21394fd244c5cbb65916337203d72abb2fb1caa862ab102fda9bb6ae744a
MD5 1b504deeaffc138e453ee3220f1aefe5
BLAKE2b-256 6b080211ca838d983e67bbe87065bce37402dd1d2d3019564aa7a42392a077b2

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e52fb1f593a59e8f61530cb1a2340b5ef8f148b58d9d1498408492e6013f203b
MD5 6086fe0f7faf29825f23c48ee3b39b14
BLAKE2b-256 53f0500ea4f369cb1318eb1f77805fce535f24496b0247b287bd9e012a6f9c54

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 de7e790cd4e0f4981517580353430638cb873b6bece2a26eaa23c989111a4257
MD5 f5215034100fe1338844e271a5943daa
BLAKE2b-256 0111e977fd4fb4497502b4292dbeea9470663576cd5ae9824131a64db54145ee

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.11.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for raphtory-0.11.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 e7ac99f57e26cdd1d02a8d3c2cd476683ab3e6734a5d96188bb3c84d6cf4d1ff
MD5 97576875270407b90f1a3c9843ebc1fc
BLAKE2b-256 0195d1f6da843e4b8faffe98d202bc31065aeb38aa65c9c981e22a7f130c54cc

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 561ecca04964c29e95ceaf51bd4e7cbdcd3a3d7d2e12758b776cc09d755a3406
MD5 c128c1eb288c63ae0d33a170415ebc05
BLAKE2b-256 48f66d0898b347698c71d11451ae78b722fca3099663bdf99f9ef61d58ad93d3

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ded0fe4d94d9a6ca688d485628bc897ad8cbf9ecc8dc6ef8133a8d0dc5731c68
MD5 f9e2cbdba787cbd49b8a338f47950e37
BLAKE2b-256 9544a0232df42b0b1f47e8a906f22455d6553ba2ef34f1d06e4d6d96c792f5c3

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b1d742f09a5cc8750ad72c184d2f695f2bc77fb4625da30030290e1e6113d1c4
MD5 8d19577b294eaae572daf99bfbc14179
BLAKE2b-256 d68ba0536747af7c5732ce4764b29f535c41a26cae42aa847bbf734691825343

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5c839a0686b8e5bf3164f3e67978d702e658a08ec43bb20b6eadf9d3de74b150
MD5 84edfd9ac8397d6d76f6bcf1ecb9ab96
BLAKE2b-256 cfba1ac2ac530b7585e7f59839d2252cf2cc105f6deb83838da787fd73280ad4

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.11.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for raphtory-0.11.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 59153eac8bfe364d6f97246003439e2137c67230c0ccd134ac9b6e7d1b4ec7b6
MD5 89148328b323a1acb85f20e5acfe6591
BLAKE2b-256 576b5114a629299fc28a9ae075a32a6425546e0abf7786c7d6971dedb7a5600f

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 98865bcc379cb5e6b8abc1040cff6dcf4ecebf228ffa0155c8c055c485d7b6f2
MD5 57527a716700e0e3515d10fbaae12140
BLAKE2b-256 cba0413a625cbae0ac847af4df32400b063af48c30c1014e0b22c845ce329abc

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4929450d6ac1fe198e5ee340e6ae07ab5c4b0601e758f4c6453507b91cd405d0
MD5 3a6e37c971b3d660beedb5ed32c1f374
BLAKE2b-256 47e8376dd07c2f841a7af9c6bbf86f16c3517f40f037637f0053dd1277ecb431

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6dcf30de78791738c90aafb9db6bf216c3c2fbd1a08c11d792795ebea481f2e7
MD5 6b2ff9b61fe2ede60c0c2f688ce4dab3
BLAKE2b-256 b0d2639a5e32f730c0646d6231917537fa1e111637118878b73be827dc5e2b4d

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 8ec89ffac11f5f90e0e4d4f2c2f4321bd708faa44d38af096d5096eef5d586d2
MD5 9c75b1bf377295e2ab0b11afceab3793
BLAKE2b-256 a9c8be13acb69a6a35c9a1e8ab58901cad21efbf7733ee1088ba4840e0c920a9

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.11.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for raphtory-0.11.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 b29385686167598856fdee18f855fee4aafd9cb7ffbb43530bd26277d78d277e
MD5 dfd7d39b6f3e0b4e06d8f3da99c83ba1
BLAKE2b-256 3f367812cbb8f3432a827303b68dacb54315fa11f4520676c0bd5ba457b29dba

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f496ae463d177abaa30311df6ab9bd3a4c6f0e3a72f6a34f857a8cd725e90a25
MD5 a6cd2252bed1ff1b076e13c8079f5166
BLAKE2b-256 bde2b5eb9e0e8277420f9d430883890e7f571b2d7a72dbea22a3843ddb81dd78

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1ce1e91923e40c35e524aad887a9075b0c88629fc682f62c5d61277efcee7aa2
MD5 5512d0f41801f8040d1c171b47428a0b
BLAKE2b-256 193e03a20219c7785c94f390438b249dd02e593af71d845d5bfcb4cdd0d73f13

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d95d23ea063606ad2136cbb90acfc5fca4b3d2a54e93c1da5c8cb7f265e6712f
MD5 8255bd00bad58ebb065834e3d62278a4
BLAKE2b-256 bbfee8d13007f4867ed14371fbb49e60ed20e06ccdf4fbb6d005ee175c6e2981

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 a52df444b38871db339e2e9089fed8990d63615ca6709abeea16d00f050d0214
MD5 293326fefc4404b59da136d98b2392be
BLAKE2b-256 a8d1567d54703fd94cdbb231db6ca810e683e41285447dc9d08d8862d35f2ed7

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.11.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for raphtory-0.11.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 e1c44a729fc63d7a936e7c129d81c4f944befe1a7187afaa421486577291def7
MD5 996f3f493f555c7da8272fb28778d2be
BLAKE2b-256 fbffb4858cc5a97dc0e9f12129ef252ddccbbdd4c7165775f27d2379acdcb31c

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ebbf37c0420256725c793afa575a3d03f6578d36aa87cd5fab3526df6cb97f1d
MD5 72527a1c592c76f4f0b5e221272a024b
BLAKE2b-256 d7f731e7adab41f46a305cb938e1022a568bee9d14b0439575c59222948ef1a4

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 fff9b7657fff08b9dcd76ec11d8f2b72c3403e1d95f103b899b716fb9d3ba295
MD5 d812f0f4fafb457d9ce80e7cd14a5e51
BLAKE2b-256 0b66a66cb13c7c93dcb6b8dff5c7306e5d903aae1cc7f436854c80c72096be34

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e45bf99f3158ca9b70f5ba18d3c7ac2cc54857eb54d1c161f4be719328606673
MD5 ed7fc2983f7c5839792b475220dbe9f0
BLAKE2b-256 9d50cdf4d3714ee2eeb099b543b09263513c5908c6d903feabae0a1425ba70e8

See more details on using hashes here.

File details

Details for the file raphtory-0.11.0-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.0-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e08fdc790509dc980f08862e28c3812793d4aaa1bd86357c55cd1822d47ade33
MD5 8adcf902e1b77d7623b0a4e75f87b502
BLAKE2b-256 8c61b5a95b056f0a6e66a767534a7281954574050a7e3834fbaf802568db48a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page