Skip to main content

Python package for raphtory, a temporal graph library

Project description


Raphtory

Test and Build Latest Release Issues Crates.io PyPI PyPI Downloads Launch Notebook

🌍 Website   📒 Documentation   Pometry   🧙Tutorial   🐛 Report a Bug   Join Slack


Raphtory is an in-memory vectorised graph database written in Rust with friendly Python APIs on top. It is blazingly fast, scales to hundreds of millions of edges on your laptop, and can be dropped into your existing pipelines with a simple pip install raphtory.

It supports time traveling, full-text search, multilayer modelling, and advanced analytics beyond simple querying like automatic risk detection, dynamic scoring, and temporal motifs.

If you wish to contribute, check out the open list of issues, bounty board or hit us up directly on slack. Successful contributions will be reward with swizzling swag!

Installing Raphtory

Raphtory is available for Python and Rust.

For python you must be using version 3.8 or higher and can install via pip:

pip install raphtory

For Rust, Raphtory is hosted on crates for Rust version 1.77 or higher and can be included in your project via cargo add:

cargo add raphtory

Running a basic example

Below is a small example of how Raphtory looks and feels when using our Python APIs. If you like what you see, you can dive into a full tutorial here.

from raphtory import Graph
from raphtory import algorithms as algo
import pandas as pd

# Create a new graph
graph = Graph()

# Add some data to your graph
graph.add_node(timestamp=1, id="Alice")
graph.add_node(timestamp=1, id="Bob")
graph.add_node(timestamp=1, id="Charlie")
graph.add_edge(timestamp=2, src="Bob", dst="Charlie", properties={"weight": 5.0})
graph.add_edge(timestamp=3, src="Alice", dst="Bob", properties={"weight": 10.0})
graph.add_edge(timestamp=3, src="Bob", dst="Charlie", properties={"weight": -15.0})

# Check the number of unique nodes/edges in the graph and earliest/latest time seen.
print(graph)

results = [["earliest_time", "name", "out_degree", "in_degree"]]

# Collect some simple node metrics Ran across the history of your graph with a rolling window
for graph_view in graph.rolling(window=1):
    for v in graph_view.nodes:
        results.append(
            [graph_view.earliest_time, v.name, v.out_degree(), v.in_degree()]
        )

# Print the results
print(pd.DataFrame(results[1:], columns=results[0]))

# Grab an edge, explore the history of its 'weight'
cb_edge = graph.edge("Bob", "Charlie")
weight_history = cb_edge.properties.temporal.get("weight").items()
print(
    "The edge between Bob and Charlie has the following weight history:", weight_history
)

# Compare this weight between time 2 and time 3
weight_change = cb_edge.at(2)["weight"] - cb_edge.at(3)["weight"]
print(
    "The weight of the edge between Bob and Charlie has changed by",
    weight_change,
    "pts",
)

# Run pagerank and ask for the top ranked node
top_node = algo.pagerank(graph).top_k(1)
print(
    "The most important node in the graph is",
    top_node[0][0],
    "with a score of",
    top_node[0][1],
)

Output:

Graph(number_of_edges=2, number_of_nodes=3, earliest_time=1, latest_time=3)

|   | earliest_time | name    | out_degree | in_degree |
|---|---------------|---------|------------|-----------|
| 0 | 1             | Alice   | 0          | 0         |
| 1 | 1             | Bob     | 0          | 0         |
| 2 | 1             | Charlie | 0          | 0         |
| 3 | 2             | Bob     | 1          | 0         |
| 4 | 2             | Charlie | 0          | 1         |
| 5 | 3             | Alice   | 1          | 0         |
| 6 | 3             | Bob     | 1          | 1         |
| 7 | 3             | Charlie | 0          | 1         |

The edge between Bob and Charlie has the following weight history: [(2, 5.0), (3, -15.0)]

The weight of the edge between Bob and Charlie has changed by 20.0 pts

The top node in the graph is Charlie with a score of 0.4744116163405977

GraphQL

As part of the python APIs you can host your data within Raphtory's GraphQL server. This makes it super easy to integrate your graphy analytics with web applications.

Below is a small example creating a graph, running a server hosting this data, and directly querying it with our GraphQL client.

from raphtory import Graph
from raphtory.graphql import GraphServer
import pandas as pd
import os

# URL for lord of the rings data from our main tutorial
url = "https://raw.githubusercontent.com/Raphtory/Data/main/lotr-with-header.csv"
df = pd.read_csv(url)

# Load the lord of the rings graph from the dataframe
graph = Graph()
graph.load_edges_from_pandas(df,"time","src_id","dst_id")

#Create a working_dir for your server and save your graph into it 
#You can save any number of graphs here or create them via the server ones its running
os.makedirs("graphs/", exist_ok=True)
graph.save_to_file("graphs/lotr_graph")

# Launch the server and get a client to it.
server = GraphServer(work_dir="graphs/").start()
client = server.get_client()

#Run a basic query to get the names of the characters + their degree
results = client.query("""{
             graph(path: "lotr_graph") {
                 nodes {
                    list{
                        name
                        degree
                       }   
                    }
                 }
             }""")

print(results)

Output:

Loading edges: 100%|██████████████| 2.65K/2.65K [00:00<00:00, 984Kit/s]
Playground: http://localhost:1736
{'graph': 
    {'nodes': 
        [{'name': 'Gandalf', 'degree': 49}, 
         {'name': 'Elrond', 'degree': 32}, 
         {'name': 'Frodo', 'degree': 51}, 
         {'name': 'Bilbo', 'degree': 21}, 
         ...
        ]
    }
}

GraphQL Playground

When you host a Raphtory GraphQL server you get a web playground bundled in, accessible on the same port within your browser (defaulting to 1736). Here you can experiment with queries on your graphs and explore the schema. An example of the playground can be seen below, running the same query as in the python example above.

GraphQL Playground

Getting started

To get you up and running with Raphtory we provide a full set of tutorials on the Raphtory website:

If API documentation is more your thing, you can dive straight in here!

Online notebook sandbox

Want to give this a go, but can't install? Check out Raphtory in action with our interactive Jupyter Notebooks! Just click the badge below to launch a Raphtory sandbox online, no installation needed.

Binder

Community

Join the growing community of open-source enthusiasts using Raphtory to power their graph analysis!

  • Follow Slack for the latest Raphtory news and development

  • Join our Slack to chat with us and get answers to your questions!

Contributors

Bounty board

Raphtory is currently offering rewards for contributions, such as new features or algorithms. Contributors will receive swag and prizes!

To get started, check out our list of desired algorithms which include some low hanging fruit (🍇) that are easy to implement.

Benchmarks

We host a page which triggers and saves the result of two benchmarks upon every push to the master branch. View this here

License

Raphtory is licensed under the terms of the GNU General Public License v3.0 (check out our LICENSE file).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

raphtory-0.11.3-cp312-none-win_amd64.whl (15.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

raphtory-0.11.3-cp312-cp312-manylinux_2_28_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

raphtory-0.11.3-cp312-cp312-manylinux_2_28_aarch64.whl (19.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

raphtory-0.11.3-cp312-cp312-macosx_11_0_arm64.whl (16.3 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

raphtory-0.11.3-cp312-cp312-macosx_10_12_x86_64.whl (17.2 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

raphtory-0.11.3-cp311-none-win_amd64.whl (15.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

raphtory-0.11.3-cp311-cp311-manylinux_2_28_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

raphtory-0.11.3-cp311-cp311-manylinux_2_28_aarch64.whl (19.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

raphtory-0.11.3-cp311-cp311-macosx_11_0_arm64.whl (16.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

raphtory-0.11.3-cp311-cp311-macosx_10_12_x86_64.whl (17.2 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

raphtory-0.11.3-cp310-none-win_amd64.whl (15.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

raphtory-0.11.3-cp310-cp310-manylinux_2_28_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

raphtory-0.11.3-cp310-cp310-manylinux_2_28_aarch64.whl (19.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

raphtory-0.11.3-cp310-cp310-macosx_11_0_arm64.whl (16.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

raphtory-0.11.3-cp310-cp310-macosx_10_12_x86_64.whl (17.2 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

raphtory-0.11.3-cp39-none-win_amd64.whl (15.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

raphtory-0.11.3-cp39-cp39-manylinux_2_28_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

raphtory-0.11.3-cp39-cp39-manylinux_2_28_aarch64.whl (19.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

raphtory-0.11.3-cp39-cp39-macosx_11_0_arm64.whl (16.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

raphtory-0.11.3-cp39-cp39-macosx_10_12_x86_64.whl (17.2 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

raphtory-0.11.3-cp38-none-win_amd64.whl (15.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

raphtory-0.11.3-cp38-cp38-manylinux_2_28_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

raphtory-0.11.3-cp38-cp38-manylinux_2_28_aarch64.whl (19.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

raphtory-0.11.3-cp38-cp38-macosx_11_0_arm64.whl (16.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

raphtory-0.11.3-cp38-cp38-macosx_10_12_x86_64.whl (17.2 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file raphtory-0.11.3-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 94d62d4ec87dcb2d078b28f7fb1b93138da9641fd662402ad8e676130b6f2db0
MD5 7a48f333ed54907c736aef1d25f69bc9
BLAKE2b-256 fb9741c91e1fa99e2bd3b16e6a8e91183e8c895a839c83c48230e2dbc8c047af

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b9b5b1308c47ddf5b43cf8c013ac2f865a7eb5b2cb7cf7e04163daec1893ce15
MD5 593278c87d0b07078cb10005449af2cd
BLAKE2b-256 3d2b564f6b08adb5ad49742d95abe7f38c7c933716056020350b8998d76b1291

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2338d5f90435a5083875eac77a65843f64a5dde4eb281528be8099bc5ccb4842
MD5 cdd5a3d702e785a504e5553f3d4ae020
BLAKE2b-256 1259bea9ee51b503e1a84baf9c0ddd3a1dfadf0b60bdb337cc67e5c7be864a8e

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eb552efff5e25d3fa93d346ed42f1659a3317de11c2244e0a8d470b5d60b1d38
MD5 336bb4a73a82d11039d96c6797265650
BLAKE2b-256 cf0f1158d7804a411f653c626379269b7174fa3a562ac48cdf5f320a239fcbf9

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f939b36737961d46f1997eecc36b546482f67ec732c19a3b762a0f7f93cdffe1
MD5 69e9d04d0d919d1b9725f73935c739e8
BLAKE2b-256 937ebef3a4891c4a052552ff36a15dd19b4ba39f674f9a64baf7cd34760f968d

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 343ad9d57409316491a2a2b93fb6d68c24e65a3938bf25298dc696c3f42be92e
MD5 ab766863387038e126c319811b139669
BLAKE2b-256 530c782a2e50388d927320b44c3a70fff03e3d2a42f123f85b7b86ca1af224c6

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 15401267ff07da639ddac8648794f8c9e6a212c14eaf16f5e875827047b0e97e
MD5 34463b895beee1d76931bb1c6cf65029
BLAKE2b-256 f4f7e6aa00af8f3782df472b8b93a87b0afc6618338491eaaf8212b5511f65ec

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 feeb477a53a4435ef2939154b5f59911a5b527df9f1326feca3afe3d4603fd90
MD5 c81f793d16728b3724c27ff7055dcb72
BLAKE2b-256 b981c9843ae003bf064ef42c93dab0cf8912423e61835caff35e95dff9b73153

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f52ff62ff728ff25bc4906e217e63e7eb03cedac2db4d2f91d981d91330c8b2
MD5 4e30d2c369200bb1c0e7095a152feb0d
BLAKE2b-256 373058672ee03bfcbedf1029cdbd72e7d9be59d46efe73fa76760da3bd9e9c97

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9b0aa7404135cf5a53df37b7700c464823d5198510473d101b8cd358c5d671d7
MD5 a53f7b43ca56e7ff4459d8a389507dde
BLAKE2b-256 a664ad178204328caf2932c800bee351228371bac89d2f2157ea13e8af6e614f

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 47d2fa9b37f091dca958be83f222a261d6fed81d33e7503d889b6acdfdddfafe
MD5 4b46c9c87b8d715e309ae6c7ad5b5a64
BLAKE2b-256 2e54a48ef74c40bca5d735f492fb573e9818ac0354acd3966f31fed4dfbb2b5a

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2ed85281f267d59837cccda9798c5b703290fb734ba87405c9493e61838a0803
MD5 210a791822e8f88827bf60420f8e1a44
BLAKE2b-256 7408218dd97d28b1da0493c94134b8cbc69d3fa9b6913653606fb49351be12f1

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ccabcfec1872dcc9c8ef0f981d3d6a760f9e7380f1e064565c0e7b5bcd68305f
MD5 5efe835f6fd1f65e5a45f7cbe26250fe
BLAKE2b-256 21212397775de799287fda33b7b6be364bdbe41033009941a11d29783b1fe7e4

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d9e06e3ed594ceb12f40a1401e6b0febb0f3ede1513f5a7aa43dfca06a2f200e
MD5 16fdc1fc4daa4e950018b761f0ea77fa
BLAKE2b-256 b54aa31a2844cfc03da6fe5a26ef7c580560b07483ddb25e0b9ec3e07946686e

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 deed4b165f924d6caddd3b2f8c2b0c151e5a248b4373f74b7ed69e77f8e65aa2
MD5 b9e8d3a48ee373901c5726d6ef2d0b3e
BLAKE2b-256 7a59a1f14cccd5ff5e4236fb7c1f9b9273d165f054006479e991a6969aa449d8

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp39-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.11.3-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 15.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for raphtory-0.11.3-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 14ba23c3f03aa706fc7c071a416802939d9119fe3db729eae7b80fe1cc7c86f5
MD5 55b54919be19f01589a1399a77f4130e
BLAKE2b-256 f9b8e2967e07bacf78c7fe6378f733d49e21d44b45dde0c2cd27e3c5bc1722df

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1abe1c8a0f1747d0cbade059552c12928ebe2e8d52a530131d3bc2279b8f42b6
MD5 39b427df2cfa92c238a0aed370667ff2
BLAKE2b-256 0244042b04ab7147d0cd2e89613b18be4f1d54199a90528aebd139bf21f62bd0

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 261726c36a6d942c4ed1d158806b05f9175cdf6c43abd7a3d7249291a1403eb5
MD5 38460b92f27dac7c20b484633dfbdbe0
BLAKE2b-256 be859a5b26371d990994a8cbaed9a560b9724a47d0c3b1ade806c72c2f9027ff

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5beeb2b1aff08bfa620e1cf97632051ee9bad261e1b83cb565b9343e761d460e
MD5 a145c9bf68963c9a16617ab9d4a17a94
BLAKE2b-256 e8c10e912a065570d74070062c5d791d21e228b2e909733b241a63bfde9d458a

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1e9109144da9a59de0ddc16dde0343759e6a53051cc40be857e2486b33fdb5e5
MD5 bd2815705bacf82fef6444b80796d28d
BLAKE2b-256 a6baf0370c44849d578ae94aedf95ae723b5ce7e57ac78178312d64fc51c26d5

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp38-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.11.3-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 15.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for raphtory-0.11.3-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 23ca3d9ead76faf45dc11d93eb6f4d6dff8313f8bbef517d7d7d13a79a61d0fc
MD5 5726fb889a31f46f035dae8747e3dd36
BLAKE2b-256 095109f509c3765ee6b0e10d7e8f95e5ca86c402b8eec8b2b15702f475f97562

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8726a8e38ba131199d4f64ce8f5963901eed32250a4b926d318b62e8da1f798d
MD5 fd72a47e746e7d3fce0bda55045cc351
BLAKE2b-256 0c2b5d10b43b86a15c1fa7e3efd624ba36919a244d74cf8fa1ac341925515ca6

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5769f17c9b7291e16f7a285b52788d17d52291d6668494e7998caa587dfe3766
MD5 5e41b0960f74adc95a9c2ec913f4b4bf
BLAKE2b-256 0e69cee372b3c083dd9a24a057696bdd5882858e485b67387316f3c7b945f0cc

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8888e1d6da8af08866b8864205e4c95643fe18b33efb4f740d4ff74a28dddad7
MD5 d6e23f587c74ac30e2ae3a22e12c676d
BLAKE2b-256 6418cb36e990bd7498f73a61e15ec3803dc9836981c79d863e9a706efa4cf29c

See more details on using hashes here.

File details

Details for the file raphtory-0.11.3-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.3-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9051d185e02fda0bf6945656baa3047efa50d885fa0b4e788671536e7a19358e
MD5 a86051c4893cf9ff715b00603fb9a7fd
BLAKE2b-256 5a9cf8385378e0c56cc5fec4a67e787ea3f616cfcd6d061c6a04be5052c35458

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page