Skip to main content

Remove image background

Project description

removebg_infusiblecoder

Downloads Downloads Downloads License

removebg_infusiblecoder is a tool to remove images background.

If this project has helped you, please consider making a donation.

Requirements

python: >3.7, <3.11

Installation

CPU support:

pip install removebg-infusiblecoder

GPU support:

pip install removebg-infusiblecoder[gpu]

Usage as a cli

After the installation step you can use removebg_infusiblecoder just typing removebg_infusiblecoder in your terminal window.

The removebg_infusiblecoder command has 3 subcommands, one for each input type:

  • i for files
  • p for folders
  • s for http server

You can get help about the main command using:

removebg_infusiblecoder --help

As well, about all the subcommands using:

removebg_infusiblecoder <COMMAND> --help

removebg_infusiblecoder i

Used when input and output are files.

Remove the background from a remote image

curl -s http://input.png | removebg_infusiblecoder i > output.png

Remove the background from a local file

removebg_infusiblecoder i path/to/input.png path/to/output.png

Remove the background specifying a model

removebg_infusiblecoder -m u2netp i path/to/input.png path/to/output.png

Remove the background returning only the mask

removebg_infusiblecoder -om i path/to/input.png path/to/output.png

Remove the background applying an alpha matting

removebg_infusiblecoder -a i path/to/input.png path/to/output.png

removebg_infusiblecoder p

Used when input and output are folders.

Remove the background from all images in a folder

removebg_infusiblecoder p path/to/input path/to/output

Same as before, but watching for new/changed files to process

removebg_infusiblecoder p -w path/to/input path/to/output

removebg_infusiblecoder s

Used to start http server.

To see the complete endpoints documentation, go to: http://localhost:5000/docs.

Remove the background from an image url

curl -s "http://localhost:5000/?url=http://input.png" -o output.png

Remove the background from an uploaded image

curl -s -F file=@/path/to/input.jpg "http://localhost:5000"  -o output.png

Usage as a library

Input and output as bytes

from removebg_infusiblecoder import remove

input_path = 'input.png'
output_path = 'output.png'

with open(input_path, 'rb') as i:
    with open(output_path, 'wb') as o:
        input = i.read()
        output = remove(input)
        o.write(output)

Input and output as a PIL image

from removebg_infusiblecoder import remove
from PIL import Image

input_path = 'input.png'
output_path = 'output.png'

input = Image.open(input_path)
output = remove(input)
output.save(output_path)

Input and output as a numpy array

from removebg_infusiblecoder import remove
import cv2

input_path = 'input.png'
output_path = 'output.png'

input = cv2.imread(input_path)
output = remove(input)
cv2.imwrite(output_path, output)

How to iterate over files in a performatic way

from pathlib import Path
from removebg_infusiblecoder import remove, new_session

session = new_session()

for file in Path('path/to/folder').glob('*.png'):
    input_path = str(file)
    output_path = str(file.parent / (file.stem + ".out.png"))

    with open(input_path, 'rb') as i:
        with open(output_path, 'wb') as o:
            input = i.read()
            output = remove(input, session=session)
            o.write(output)

Usage as a docker

Just replace the removebg_infusiblecoder command for docker run syedusama5556/removebg_infusiblecoder.

Try this:

docker run syedusama5556/removebg_infusiblecoder i path/to/input.png path/to/output.png

Models

All models are downloaded and saved in the user home folder in the .u2net directory.

The available models are:

  • u2net (download, source): A pre-trained model for general use cases.
  • u2netp (download, source): A lightweight version of u2net model.
  • u2net_human_seg (download, source): A pre-trained model for human segmentation.
  • u2net_cloth_seg (download, source): A pre-trained model for Cloths Parsing from human portrait. Here clothes are parsed into 3 category: Upper body, Lower body and Full body.
  • silueta (download, source): Same as u2net but the size is reduced to 43Mb.

How to train your own model

If You need more fine tunned models try this: https://github.com/danielgatis/rembg/issues/193#issuecomment-1055534289

Some video tutorials

References

Buy me a coffee

Liked some of my work? Buy me a coffee (or more likely a beer)

Buy Me A Coffee

License

Copyright (c) 2022-present Syed Usama Ahmad

Licensed under MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

removebg_infusiblecoder-0.0.2.tar.gz (37.4 kB view details)

Uploaded Source

Built Distribution

removebg_infusiblecoder-0.0.2-py3-none-any.whl (19.6 kB view details)

Uploaded Python 3

File details

Details for the file removebg_infusiblecoder-0.0.2.tar.gz.

File metadata

File hashes

Hashes for removebg_infusiblecoder-0.0.2.tar.gz
Algorithm Hash digest
SHA256 0cdd0ae5c486a8fb9dc922ce6fff3b4c6e4252d52198dd16655920c03f207fe7
MD5 2b96019264439ab2afa3486f4a90c5e8
BLAKE2b-256 9f24db11ea2cffaee0ef1040f0398a82ffb5d18eaed1afc3b621e800ea2451a7

See more details on using hashes here.

File details

Details for the file removebg_infusiblecoder-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for removebg_infusiblecoder-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 80998e13eb27221aa022a41cad80be8baa861af3aa68b2d71928cbd5ff68064e
MD5 e0b742fb360e814b0e9dc2ff744d78aa
BLAKE2b-256 b0a7a5f54baf7cdb619ca7e11e5c23bea67eadff0c7846803e630a1d4c96e51b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page