Skip to main content

Online machine learning in Python

Project description

river_logo

unit-tests code-quality documentation discord pypi pepy black mypy bsd_3_license


River is a Python library for online machine learning. It aims to be the most user-friendly library for doing machine learning on streaming data. River is the result of a merger between creme and scikit-multiflow.

⚡️ Quickstart

As a quick example, we'll train a logistic regression to classify the website phishing dataset. Here's a look at the first observation in the dataset.

>>> from pprint import pprint
>>> from river import datasets

>>> dataset = datasets.Phishing()

>>> for x, y in dataset:
...     pprint(x)
...     print(y)
...     break
{'age_of_domain': 1,
 'anchor_from_other_domain': 0.0,
 'empty_server_form_handler': 0.0,
 'https': 0.0,
 'ip_in_url': 1,
 'is_popular': 0.5,
 'long_url': 1.0,
 'popup_window': 0.0,
 'request_from_other_domain': 0.0}
True

Now let's run the model on the dataset in a streaming fashion. We sequentially interleave predictions and model updates. Meanwhile, we update a performance metric to see how well the model is doing.

>>> from river import compose
>>> from river import linear_model
>>> from river import metrics
>>> from river import preprocessing

>>> model = compose.Pipeline(
...     preprocessing.StandardScaler(),
...     linear_model.LogisticRegression()
... )

>>> metric = metrics.Accuracy()

>>> for x, y in dataset:
...     y_pred = model.predict_one(x)      # make a prediction
...     metric.update(y, y_pred)  # update the metric
...     model.learn_one(x, y)              # make the model learn

>>> metric
Accuracy: 89.28%

Of course, this is just a contrived example. We welcome you to check the introduction section of the documentation for a more thorough tutorial.

🛠 Installation

River is intended to work with Python 3.10 and above. Installation can be done with pip:

pip install river

There are wheels available for Linux, MacOS, and Windows. This means you most probably won't have to build River from source.

You can install the latest development version from GitHub as so:

pip install git+https://github.com/online-ml/river --upgrade
pip install git+ssh://git@github.com/online-ml/river.git --upgrade  # using SSH

This method requires having Cython and Rust installed on your machine.

🔮 Features

River provides online implementations of the following family of algorithms:

  • Linear models, with a wide array of optimizers
  • Decision trees and random forests
  • (Approximate) nearest neighbors
  • Anomaly detection
  • Drift detection
  • Recommender systems
  • Time series forecasting
  • Bandits
  • Factorization machines
  • Imbalanced learning
  • Clustering
  • Bagging/boosting/stacking
  • Active learning

River also provides other online utilities:

  • Feature extraction and selection
  • Online statistics and metrics
  • Preprocessing
  • Built-in datasets
  • Progressive model validation
  • Model pipelines

Check out the API for a comprehensive overview

🤔 Should I be using River?

You should ask yourself if you need online machine learning. The answer is likely no. Most of the time batch learning does the job just fine. An online approach might fit the bill if:

  • You want a model that can learn from new data without having to revisit past data.
  • You want a model which is robust to concept drift.
  • You want to develop your model in a way that is closer to what occurs in a production context, which is usually event-based.

Some specificities of River are that:

  • It focuses on clarity and user experience, more so than performance.
  • It's very fast at processing one sample at a time. Try it, you'll see.
  • It plays nicely with the rest of Python's ecosystem.

🔗 Useful links

👐 Contributing

Feel free to contribute in any way you like, we're always open to new ideas and approaches.

  • Open a discussion if you have any question or enquiry whatsoever. It's more useful to ask your question in public rather than sending us a private email. It's also encouraged to open a discussion before contributing, so that everyone is aligned and unnecessary work is avoided.
  • Feel welcome to open an issue if you think you've spotted a bug or a performance issue.
  • Our roadmap is public. Feel free to work on anything that catches your eye, or to make suggestions.

Please check out the contribution guidelines if you want to bring modifications to the code base.

🤝 Affiliations

affiliations

💬 Citation

If River has been useful to you, and you would like to cite it in a scientific publication, please refer to the paper published at JMLR:

@article{montiel2021river,
  title={River: machine learning for streaming data in Python},
  author={Montiel, Jacob and Halford, Max and Mastelini, Saulo Martiello
          and Bolmier, Geoffrey and Sourty, Raphael and Vaysse, Robin and Zouitine, Adil
          and Gomes, Heitor Murilo and Read, Jesse and Abdessalem, Talel and others},
  year={2021}
}

📝 License

River is free and open-source software licensed under the 3-clause BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

river-0.22.0.tar.gz (1.4 MB view details)

Uploaded Source

Built Distributions

river-0.22.0-cp313-cp313-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.13Windows x86-64

river-0.22.0-cp313-cp313-win32.whl (2.2 MB view details)

Uploaded CPython 3.13Windows x86

river-0.22.0-cp313-cp313-musllinux_1_1_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.13musllinux: musl 1.1+ x86-64

river-0.22.0-cp313-cp313-musllinux_1_1_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.13musllinux: musl 1.1+ ARM64

river-0.22.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

river-0.22.0-cp313-cp313-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (3.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

river-0.22.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

river-0.22.0-cp313-cp313-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

river-0.22.0-cp313-cp313-macosx_10_13_universal2.whl (2.6 MB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

river-0.22.0-cp312-cp312-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.12Windows x86-64

river-0.22.0-cp312-cp312-win32.whl (2.1 MB view details)

Uploaded CPython 3.12Windows x86

river-0.22.0-cp312-cp312-musllinux_1_1_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

river-0.22.0-cp312-cp312-musllinux_1_1_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ ARM64

river-0.22.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

river-0.22.0-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (3.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

river-0.22.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

river-0.22.0-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

river-0.22.0-cp312-cp312-macosx_10_13_universal2.whl (2.5 MB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

river-0.22.0-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11Windows x86-64

river-0.22.0-cp311-cp311-win32.whl (1.9 MB view details)

Uploaded CPython 3.11Windows x86

river-0.22.0-cp311-cp311-musllinux_1_1_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

river-0.22.0-cp311-cp311-musllinux_1_1_aarch64.whl (3.7 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ ARM64

river-0.22.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

river-0.22.0-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (3.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

river-0.22.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

river-0.22.0-cp311-cp311-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

river-0.22.0-cp311-cp311-macosx_10_13_universal2.whl (2.4 MB view details)

Uploaded CPython 3.11macOS 10.13+ universal2 (ARM64, x86-64)

river-0.22.0-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10Windows x86-64

river-0.22.0-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10Windows x86

river-0.22.0-cp310-cp310-musllinux_1_1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

river-0.22.0-cp310-cp310-musllinux_1_1_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ ARM64

river-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

river-0.22.0-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

river-0.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

river-0.22.0-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

river-0.22.0-cp310-cp310-macosx_10_13_universal2.whl (2.3 MB view details)

Uploaded CPython 3.10macOS 10.13+ universal2 (ARM64, x86-64)

File details

Details for the file river-0.22.0.tar.gz.

File metadata

  • Download URL: river-0.22.0.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for river-0.22.0.tar.gz
Algorithm Hash digest
SHA256 8b06840e0d832dbd1064145e56e3f75492402716f5eb733753da3099194a3a68
MD5 b4c69b65aca70e51dc4c1933c848bed4
BLAKE2b-256 31234e4d1c99e38767c0afb4d6bcbe9a36157bf365578320d1b3356054e1fc79

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: river-0.22.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for river-0.22.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 467b4120e8e36d375fcc4a01ce380e1b5effc63a9414d723cabaf393d9bb02c4
MD5 c96a430763d9e376347048f869b79aad
BLAKE2b-256 b6d002c1bcda0bb48748cd7cf64ae34dd38a2062c765876e3794e2a07eac8e82

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: river-0.22.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for river-0.22.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 fa7ad2edbedd711fca0e34950ee6fe5140fbf83525778818016c1646b21ca3e8
MD5 671f43424ab2ef5f3221927bc738f006
BLAKE2b-256 f301b8a5953def38d3aacfc56804d9daf37636df3b50b7c8156d562fe3f360cc

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp313-cp313-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp313-cp313-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8674fdd8c72cdf69d0a334bc1f93fda7e069ba9890562b0fd8095b180198fdc0
MD5 8822048e83122aa71ecbfa55c9461d18
BLAKE2b-256 7e1aea573bfdadeeb57b9c680ea93de9dacaec6401a5d6c91c21697ea8527927

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp313-cp313-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp313-cp313-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3484021d0047c523ddc7e54b3daa5d2460920765f0f994398bc590360be14d94
MD5 0eeb9c743380a439f1d7e09d1c865b56
BLAKE2b-256 02d5072456ae858077ce9b7f777cc449f1f2b4b82f8da9004f76b6d13d5065e8

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f830f6459db13743fb20fcce83a73f9172e5bea5208d64b826e318f19ff946a7
MD5 e02e786f4adefc83b60960c1b260a96a
BLAKE2b-256 917baa227d434a6ba7a8d5ceeebfaa88d784254c43e918128ab4fbfde8a3f722

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp313-cp313-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp313-cp313-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f7cdc40b2b0e47f22411e0cf81ef08f0938f804cd32b6e3544ccf61b59fba995
MD5 a49143d29e0aaf234d6478c0e40ed1c3
BLAKE2b-256 7796f14171c56d9d9fd169754dc27bfd2d311833e312b07292054a087afdd3d6

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 016de2e7e88ef33b4c4c802c96260ad0f1891cb8da8a501ce7c61995d36f0001
MD5 159510b76743061bf9170f69d8a75b98
BLAKE2b-256 b754d0adae3fefdb11df39df771c5688e94e0b1992b7b754a6abc1e205da41f2

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5615fef7e08985b7e041ee8d3913fe22364ffe3270df63a7a76da564376a0375
MD5 51ce15ad085bcd0312078facf386e547
BLAKE2b-256 d7fa167c75c5cdb4684e72026ea31587c751670665b4921ff93a4f7ec25a7430

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 1adc5f71241cabe7effff41088b9360798bb405b0c5c47f899b6b324512c7424
MD5 e1b32ade953e6ff7044291fce034ab91
BLAKE2b-256 c115dbe26ee8e016ce877087f4348426cd49d3ae538090213a66d3f29e1d7582

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: river-0.22.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for river-0.22.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 673bb7ba229a6a8043e7ce6c1fc9451b0e22a0094676f20a4903cd612d087715
MD5 b28ab5ff1b0c7afc7acd849d450b074c
BLAKE2b-256 bcd5f88a19a878270f8ab5821e8ac926a5db8301310990ab93600d5afb3c930d

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: river-0.22.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for river-0.22.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 2a62ee46fcf70a96c56ad8c30b04cf48c2fa1b09eaa45935ebeb394d45edae0a
MD5 849b6081fcf26caec69e438edb1adc3d
BLAKE2b-256 d9d597cf44af09031209ee25238b131e30e3fb3de4c91d394b5aef29f9b54096

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 29b3522ee06a2e26c51da94b99d0dc4771f8d70c4277c93516b16a090aea6d19
MD5 6a06d841413d0f975605a1f6c17f504f
BLAKE2b-256 5cb4bf58ef98e0b6d219a0c4f153238bbafdb487feab2f0f66d5dbb08ecdef92

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4f1028fdf13aea37602bc169462779a34499e24e19ba01e21ac9d90f32a5bcfd
MD5 f9c2dc3177dc503ba03f88df4404528e
BLAKE2b-256 73924a378d36be5e5f88263b3207a229eac79c8ac383523ea024827cad728f12

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0fb478839a3ea59efaac93f106c3078979dcaa142f678a7ce8b249a2d0487573
MD5 d76b837dc37d751266eaad25c8597aae
BLAKE2b-256 721893d114964933f58127112ae4b64574378433f235db7e3429f209a856c072

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f7ce7e6f5d64432f7b4ae73530e7b22313582c1f3c2a1ef2f8bca604569d9db7
MD5 f983c489193b74a31a9f223e94481b75
BLAKE2b-256 2ca8163cd4c010e2622947cc2e4dbae224dbfd9cd88dcf9d3c89f9884fa30d68

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 86d2af4f1ae7294db1cfbe5d587f759f1d2398b20f7dae73301d7e12db56d579
MD5 796d38f0d19021cf59fdfcec0a6e9ff8
BLAKE2b-256 e21481bbe837cc8a2621ef13cdcb7b80a40c08e08c12de65f5f740b434918960

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 46c52b5e2e727aba83b51df2832d2e6d75ae58960c297320356e3e23746cd479
MD5 6b9f9a89a6486d4fe7651ab9bbbdcacb
BLAKE2b-256 429221f530c61ba8b1187cdd1eab72cfbc9dccc6501cb627c63c2274cc5758a1

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 23af8856bfd6839c28dc777e980500e4d89ca6cf986391a8da6b1557b651077e
MD5 72cdeb171a0118daa33f4a77cc0c37cb
BLAKE2b-256 4e3bd4d47bb966873fada5cc013f40d7eb940454f092c3c97fd77fdfb74d205f

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: river-0.22.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for river-0.22.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f5ab3a8b4764de4c22efdb94e94a53f38c47a0ab90854950191ca13badb84021
MD5 63f0a846fcc3daff811215becb8496f9
BLAKE2b-256 a404a6a00f7240e589496a30d565d832cd80caab62b3e261b0c42c49e0a3cae7

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: river-0.22.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for river-0.22.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 cffc9a361c1b1281014373e9853fff8d0d9588f1ddb479225f29618d6586826d
MD5 833edff3b45c30d9bab268be54d51c4b
BLAKE2b-256 f82d336f64407730ac7ef0b81a2bdf2d012614d0225c0db2f1b9262e47cab609

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eeaa9b3c28c6bb84a0d816e6d6c8d1fd19ef81fb6c91d3f0f62782e505dc8603
MD5 ea863748f6634c99c7b8d299e597fb48
BLAKE2b-256 e9ebaa1fcd9e506444dcac0d233e16ceee06abb01cca18ca617d8dc17e5845da

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3ff729ad0b573bfe7ca8f600a4376f4eecfef03feb9a8f9ad1d11401697ba4cb
MD5 0021b4a1b02f40a67c4e319ae624750e
BLAKE2b-256 b3475b9ff88b2b49df555e688c89d2c8a5b8bb4d86e5d7a16c289f80b7ed4beb

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c982d614db62d9f67ef1c4a0259fe2063aef60df70f728dde9dfa50370d29720
MD5 78d7ae8035001a35858110448154f98a
BLAKE2b-256 f8a35ba303206789b009b9b4926a25ee18d490d7abe6c0cc65b2b39071112889

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d0bb0bcefea1ac2b96d5e036254b11956196503f552e0767b8fd5b1f66b7126a
MD5 0918c8a128216c77176498c2b5aab64b
BLAKE2b-256 fbe169f4fa4e2e08d1a33ce3c2cbd460c7a734161586c41f17b63ef12537f398

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0ff19fd615d35e787a2b02a68ed6d1b45d61e7f708fcb595f0c43dffaf24886
MD5 a39592c7cae9ee3f96881e3c35d0b6c1
BLAKE2b-256 5a393e72052d66210febc73044bac88f6e34f5896de3a1881ca7114624271503

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a3eb447ac6b9887845f92f6e3dac962ac10eaf6f61ef61d46c11c7df5778c01b
MD5 d9334309352fb7a0994ca143a1af7990
BLAKE2b-256 0501d7de1e6dd25d81cae3826ad1254f67d772f705513355b2fba389ce729037

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 8857fb02207e80ad268eeda4ccb7d4959f18a247d248d953cc4c848a1ba70bce
MD5 7e04f8fa00e70d98222d5fde2791ec25
BLAKE2b-256 0e069764669f70aa12d9a78ac4b33e472cbb7eadec2f8ae514d29b0c5650f39a

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: river-0.22.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for river-0.22.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 875573237620e8d3ea17ba4f630105e885c2961abac8978d87edc15100211e06
MD5 8bb560ab25cfee1a23776a9cb7ba4f3f
BLAKE2b-256 4fa3e42c4072260e1537c10f2123bb67545cd76ac8dd50d2b9e22ffdada545f2

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: river-0.22.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for river-0.22.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b60947a16aab1475cfb7f2c866b7b6ee492c2325affc307883099168f2090d9c
MD5 2135141da1d63c744a22ea720742a6eb
BLAKE2b-256 27959b5e664a19fb8055a70971a279d9aa28eb01a3fd5568918215ae31790adc

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 081f0efc3bf51daf2092b7fc1d85fd372b16c4634ac6558f69c2ab5522c48ea1
MD5 d50a99106b94613d41aaf4de9a4fc561
BLAKE2b-256 5c9f220447897d45e7ddabf0faf337b9ac9c682a31b1d286869915c924b8e9cb

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d7419fa7fd7b025fe3c1165aec60348cd7b3e19ebbf9a0acf9f06dfead0a0560
MD5 b39430ee4c3a6a70e369e3df955756c6
BLAKE2b-256 bf0d9297f60d6b717cfb48f1bd8ea336792aacac6f7476a3d91f3fc15263719d

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 117105ac423b226e7a02fb0ee804b62101c82e91bd6da58572ca413c1e0cf6aa
MD5 fe8df13a37a2c8e0547627626f9aac37
BLAKE2b-256 8b23637da9a38c2923437bd48e96ecce2b69c05d05d61a99525a44251fe2510c

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1ee33d698869d1dff874cd5d9554334ff3bfee9bf665b65bbf4c02b103db51d2
MD5 a3a156424d0c3f4fd22e49b6d789968e
BLAKE2b-256 9f3a5d7f25c1e6bdfa7533c722e04d708332b93743a156872c9843b767a76303

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d3754d55074de5c1a409eb53901bcd2b12219de47d40ce43505f5641fc875932
MD5 4a2d34f991c9ec26d818bc4f23b4a78b
BLAKE2b-256 135abf9c743786a6829ea8f09fb1bfc088db46340773584bc0820b57940d0dd9

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0e86bda067c001c6e5f6768d02f6271ccbf747d2b03cbdd8d4b3d3b095b30de4
MD5 931e031515042685828843ae08a1c4dd
BLAKE2b-256 df469d0c7f6ad97349e9cdc59e06fa7d0b30a58d5811a347db089ce99e61e823

See more details on using hashes here.

File details

Details for the file river-0.22.0-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for river-0.22.0-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 dbc07c52371d43968769209ffaf84782f822ee2d9bcaa58809ab0f8cd56a493b
MD5 76327e7268ccf19c17ae3fdb30250776
BLAKE2b-256 e7b880d7e77399bd00788a0aa5d07331d99bbe69491ba5dbd5603cd00ede6c67

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page