Skip to main content

Online machine learning in Python

Project description


river_logo


tests documentation roadmap pypi pepy bsd_3_license


River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition is to be the go-to library for doing machine learning on streaming data.

⚡️ Quickstart

As a quick example, we'll train a logistic regression to classify the website phishing dataset. Here's a look at the first observation in the dataset.

>>> from pprint import pprint
>>> from river import datasets

>>> dataset = datasets.Phishing()

>>> for x, y in dataset:
...     pprint(x)
...     print(y)
...     break
{'age_of_domain': 1,
 'anchor_from_other_domain': 0.0,
 'empty_server_form_handler': 0.0,
 'https': 0.0,
 'ip_in_url': 1,
 'is_popular': 0.5,
 'long_url': 1.0,
 'popup_window': 0.0,
 'request_from_other_domain': 0.0}
True

Now let's run the model on the dataset in a streaming fashion. We sequentially interleave predictions and model updates. Meanwhile, we update a performance metric to see how well the model is doing.

>>> from river import compose
>>> from river import linear_model
>>> from river import metrics
>>> from river import preprocessing

>>> model = compose.Pipeline(
...     preprocessing.StandardScaler(),
...     linear_model.LogisticRegression()
... )

>>> metric = metrics.Accuracy()

>>> for x, y in dataset:
...     y_pred = model.predict_one(x)      # make a prediction
...     metric = metric.update(y, y_pred)  # update the metric
...     model = model.learn_one(x, y)      # make the model learn

>>> metric
Accuracy: 89.20%

🛠 Installation

River is intended to work with Python 3.6 or above. Installation can be done with pip:

pip install river

There are wheels available for Linux, MacOS, and Windows, which means that you most probably won't have to build River from source.

You can install the latest development version from GitHub as so:

pip install git+https://github.com/online-ml/river --upgrade

Or, through SSH:

pip install git+ssh://git@github.com/online-ml/river.git --upgrade

🧠 Philosophy

Machine learning is often done in a batch setting, whereby a model is fitted to a dataset in one go. This results in a static model which has to be retrained in order to learn from new data. In many cases, this isn't elegant nor efficient, and usually incurs a fair amount of technical debt. Indeed, if you're using a batch model, then you need to think about maintaining a training set, monitoring real-time performance, model retraining, etc.

With River, we encourage a different approach, which is to continuously learn a stream of data. This means that the model process one observation at a time, and can therefore be updated on the fly. This allows to learn from massive datasets that don't fit in main memory. Online machine learning also integrates nicely in cases where new data is constantly arriving. It shines in many use cases, such as time series forecasting, spam filtering, recommender systems, CTR prediction, and IoT applications. If you're bored with retraining models and want to instead build dynamic models, then online machine learning (and therefore River!) might be what you're looking for.

Here are some benefits of using River (and online machine learning in general):

  • Incremental: models can update themselves in real-time.
  • Adaptive: models can adapt to concept drift.
  • Production-ready: working with data streams makes it simple to replicate production scenarios during model development.
  • Efficient: models don't have to be retrained and require little compute power, which lowers their carbon footprint
  • Fast: when the goal is to learn and predict with a single instance at a time, then River is an order of magnitude faster than PyTorch, Tensorflow, and scikit-learn.

🔥 Features

  • Linear models with a wide array of optimizers
  • Nearest neighbors, decision trees, naïve Bayes
  • Progressive model validation
  • Model pipelines as a first-class citizen
  • Anomaly detection
  • Recommender systems
  • Time series forecasting
  • Imbalanced learning
  • Clustering
  • Feature extraction and selection
  • Online statistics and metrics
  • Built-in datasets
  • And much more

🔗 Useful links

👁️ Media

👍 Contributing

Feel free to contribute in any way you like, we're always open to new ideas and approaches.

There are three ways for users to get involved:

  • Issue tracker: this place is meant to report bugs, request for minor features, or small improvements. Issues should be short-lived and solved as fast as possible.
  • Discussions: you can ask for new features, submit your questions and get help, propose new ideas, or even show the community what you are achieving with River! If you have a new technique or want to port a new functionality to River, this is the place to discuss.
  • Roadmap: you can check what we are doing, what are the next planned milestones for River, and look for cool ideas that still need someone to make them become a reality!

Please check out the contribution guidelines if you want to bring modifications to the code base. You can view the list of people who have contributed here.

❤️ They've used us

These are companies that we know have been using River, be it in production or for prototyping.

companies

Feel welcome to get in touch if you want us to add your company logo!

🤝 Affiliations

Sponsors

sponsors

Collaborating institutions and groups

collaborations

💬 Citation

If river has been useful for your research and you would like to cite it in an scientific publication, please refer to this paper:

@misc{2020river,
      title={River: machine learning for streaming data in Python},
      author={Jacob Montiel and Max Halford and Saulo Martiello Mastelini
              and Geoffrey Bolmier and Raphael Sourty and Robin Vaysse
              and Adil Zouitine and Heitor Murilo Gomes and Jesse Read
              and Talel Abdessalem and Albert Bifet},
      year={2020},
      eprint={2012.04740},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

📝 License

River is free and open-source software licensed under the 3-clause BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

river-0.10.1.tar.gz (848.6 kB view details)

Uploaded Source

Built Distributions

river-0.10.1-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9Windows x86-64

river-0.10.1-cp39-cp39-win32.whl (1.2 MB view details)

Uploaded CPython 3.9Windows x86

river-0.10.1-cp39-cp39-musllinux_1_1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

river-0.10.1-cp39-cp39-musllinux_1_1_i686.whl (2.7 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

river-0.10.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

river-0.10.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

river-0.10.1-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

river-0.10.1-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8Windows x86-64

river-0.10.1-cp38-cp38-win32.whl (1.2 MB view details)

Uploaded CPython 3.8Windows x86

river-0.10.1-cp38-cp38-musllinux_1_1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

river-0.10.1-cp38-cp38-musllinux_1_1_i686.whl (2.7 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

river-0.10.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

river-0.10.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

river-0.10.1-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

river-0.10.1-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7mWindows x86-64

river-0.10.1-cp37-cp37m-win32.whl (1.2 MB view details)

Uploaded CPython 3.7mWindows x86

river-0.10.1-cp37-cp37m-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

river-0.10.1-cp37-cp37m-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ i686

river-0.10.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

river-0.10.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

river-0.10.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file river-0.10.1.tar.gz.

File metadata

  • Download URL: river-0.10.1.tar.gz
  • Upload date:
  • Size: 848.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1.tar.gz
Algorithm Hash digest
SHA256 d6859b17c9e1e08a643b5db613cc0a3125277d1e4b290bdcf2ff22191be40d9d
MD5 80009b288f672a098ce7a593ef08ff67
BLAKE2b-256 065951cc12684061b6a4026a1f1eaad01c61cde810f8b3f2e5939d0195248d64

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: river-0.10.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 af88000d806d736b3c43ccce54a038feb19335f5f74cc847c1e6c7b5358a3501
MD5 d20b612fddb6b29899dec7de6158cb09
BLAKE2b-256 10b41625cd99f1acfd4c9bc7897db153f7552750e4a8726a6f55579371b88949

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: river-0.10.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9bffdb3384e368c8fcb1af5476dc9832073d39c83aec7dbff13138b28f23314d
MD5 a2c88d6c17a9dbed551e8ca08ce17f04
BLAKE2b-256 42e0345ef29053124bfc7291195fa98b9c2dfbd4cdc53f36f2a2c3b4448662f8

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: river-0.10.1-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e712b528fcd09bacb285e9e4366177e313d1fe0e050a215b96d6fa48d2de47aa
MD5 66053a0da2deca8cda2690b22f96f699
BLAKE2b-256 197d62a3852f33e4b32b8f0107ac4b950d6c419261262bc696fadd3013954a64

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: river-0.10.1-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 edcef152837ccfe36746d2ee0566ae32629a425109442957967891a09760cd24
MD5 84f78d889343e515118f5d50c5ea11a2
BLAKE2b-256 07135fa8ba6f439e2ee353f29f3c14d8cba3a1574b28fc723bdd9b1c7a9166b9

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for river-0.10.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 173c4d978e929e8c67e906e60cdae97fce8eaed8fc26ea77f932d3898f5dcb51
MD5 9c046cc9573e963f7cb0f223ce5d9875
BLAKE2b-256 a17e07a854411fea74b680fe21594401e81f4f76c2bbc1e17e556f160220ce44

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for river-0.10.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6c93f40e795fa7c7d5ef5ec78ff7c809c4fd522ae002d87c07b6e2f4988973fa
MD5 ab15a03568bb69630a9923b7201d5647
BLAKE2b-256 d080cca5637d3bbed01c5d7c337a21a6142d7cf6d15ad93214573cc666ada55d

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: river-0.10.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 52f853193cd0d3ea7115e250e1674873b18b32edf206fef855c27b9690792323
MD5 4a8b26e77dc4c9a46e2998d9d3b3c85a
BLAKE2b-256 d81918ae775c38bd0cc9968f7f571d8354a2bb54783c9ce138c3c136f15a76c5

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: river-0.10.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0b8b24f05e3ad8e1c46b00c8e2fd75252417ce16ea9e5a8f08c810081eaa87b3
MD5 6c976e1569f10ab8267fad071d03663b
BLAKE2b-256 643af145ca6563ec63903834d3c2a56d8e4dc5af89e096a1eed6aa2ab9e3a0f3

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: river-0.10.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b7215853f4d383b549310890895be340709d97c524111ca09349f8b39f1929e9
MD5 b91d353ac27c0c2e3391ea1cf3fc6f3e
BLAKE2b-256 4e6215b81cc58093c9291de18a1741c2214c88e85f78d1746dfeb35a80e7ec0c

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: river-0.10.1-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 82f0f10fece7baa2b889ef38bfa07bd9c4bebf90a2673524c003e828d5e68cf2
MD5 4aea00b806b94a16794eba9e618a7cb0
BLAKE2b-256 e158074f8288e90ea7ecf3c9f99d5668e2fc226a5fa078169670b043749d060b

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: river-0.10.1-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 57c45a6cb0c743af40d603a7849c9b70d4c85c765dde7d5032cb789028345388
MD5 fffd8aee4788a0e5cc36985dfa75b02f
BLAKE2b-256 515eaf8376732d4ae5b5cfd162aacbfdff9d16d05b3df1ae3d86b5b0b2fd01dd

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for river-0.10.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7abd25b317a55091077e9e4b98f29ef595e3aaa6ed7b1c4784748ba458b84ff0
MD5 d1e19f4abde9b473652c78239caafdb0
BLAKE2b-256 497d43fe3fa063a4020d3a9499c1d744b9edd18e3610ba8ebb8b755676ca6126

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for river-0.10.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ecc4ccd4d028c62dde1cbf089d02864f2dccf165d084d731562382f4632891ba
MD5 54e16b7e9f616c2ff0c62b30700485ef
BLAKE2b-256 59018a917d94fa9f3441265f3d98bd61114eb81dedfedba34ec91464c5e1ae47

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: river-0.10.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 33052daf6a02e19f6bf3ff8e8d7540b7689b53270cebc17c8c14f287e79c9210
MD5 eced6549c1237920d93a42eaae23cbd1
BLAKE2b-256 aeeecd0f39c4e700c465d1b289934029c9f612ec524d81c4c2cbcffdc95c4ab6

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: river-0.10.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 de1d2a9e9790be219d99057f83586e1f5df8ae0a3c019652e5e9742172a6a863
MD5 cfa5545204cb2b9cbd4211204cf802b9
BLAKE2b-256 80c21c02a698a9ef30e4ff8f3251efd732fbe2647b504ead542394c5de707710

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: river-0.10.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d14aa3a08d78c88c01d086fdfe7111e4704a6a907d9d51c99eb2064fc1bb6a9c
MD5 7fd82bdf7e911ae82d42db0442c64abf
BLAKE2b-256 d24f9cf1074a7fa24291040969beb0b3fa0cb9f63f863093311dcdbe1c7bc7a6

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: river-0.10.1-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 61fac01f078ace55640d07c3e7bc2712371b2a0e12e4b71346b9a26bc8fd7c69
MD5 78f367c178caa15b57f5c7e375770388
BLAKE2b-256 1127078333e796cda36a0d073b8acfb75697499e56e675b43a5d9ac3398c63f0

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: river-0.10.1-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cab7bfb25677dd3d9fa8cacca257a406ca600cbed9e4d154ccaa8c3f65964e9a
MD5 7feac1a02382b6438ced5f1cf8ef6eda
BLAKE2b-256 533d5224b7461146683214b9b943aefecc616c253e1481893fdf2681f5139894

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for river-0.10.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc50234d1924c15c0f0d1e37a8d4c3f1d550767d409f325951737a7b85f01c41
MD5 dc7fc53d8f5e810557bb95704967d380
BLAKE2b-256 72f8cc570227ab5ff35c246235c0e681b42be60c8059536b11f66ab79dd201d6

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for river-0.10.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b9279c2bf4d5a722f5c478e9af9a7f860a3f8053eb0be5567879c12f335aee05
MD5 abae62772b4262c1e3bfbca919b376fe
BLAKE2b-256 2ac5a27f144adde7b8e6416579031b0561fd1b2436fab289b6ae9748405baac3

See more details on using hashes here.

File details

Details for the file river-0.10.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: river-0.10.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for river-0.10.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4a3b125df54d3e77e67faa8d7647455d2dde334c919f03011f6be9e502de24cb
MD5 43f29aa3f44ac2a8143a4dd0f0149d6e
BLAKE2b-256 f7ac729926e6504cccee03cdab8d88176d05d75caa1d3b29e360abf5816c1352

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page