Skip to main content

Heuristic Algorithms in Python

Project description

scikit-opt

PyPI release Build Status codecov PyPI_downloads Stars Forks Join the chat at https://gitter.im/guofei9987/scikit-opt

Heuristic Algorithms in Python
(Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,Artificial Fish Swarm Algorithm in Python)

install

pip install scikit-opt

News:

All algorithms will be available on TensorFlow/Spark pytorch on version 0.4, getting parallel performance.
DE(Differential Evolution Algorithm) will be complete on version 0.5
Have fun!

feature: UDF

UDF (user defined function) is available now!

For example, you just worked out a new type of selection function.
Now, your selection function is like this:
-> Demo code: examples/demo_ga_udf.py#s1

# step1: define your own operator:
def selection_tournament(self, tourn_size):
    FitV = self.FitV
    sel_index = []
    for i in range(self.size_pop):
        aspirants_index = np.random.choice(range(self.size_pop), size=tourn_size)
        sel_index.append(max(aspirants_index, key=lambda i: FitV[i]))
    self.Chrom = self.Chrom[sel_index, :]  # next generation
    return self.Chrom

Import and build ga
-> Demo code: examples/demo_ga_udf.py#s2

import numpy as np
from sko.GA import GA, GA_TSP

demo_func = lambda x: x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2
ga = GA(func=demo_func, n_dim=3, size_pop=100, max_iter=500, lb=[-1, -10, -5], ub=[2, 10, 2])

Regist your udf to GA
-> Demo code: examples/demo_ga_udf.py#s3

ga.register(operator_name='selection', operator=selection_tournament, tourn_size=3)

scikit-opt also provide some operators
-> Demo code: examples/demo_ga_udf.py#s4

from sko.GA import ranking_linear, ranking_raw, crossover_2point, selection_roulette_2, mutation

ga.register(operator_name='ranking', operator=ranking_linear). \
    register(operator_name='crossover', operator=crossover_2point). \
    register(operator_name='mutation', operator=mutation)

Now do GA as usual
-> Demo code: examples/demo_ga_udf.py#s5

best_x, best_y = ga.run()
print('best_x:', best_x, '\n', 'best_y:', best_y)

Until Now, the udf surport crossover, mutation, selection, ranking of GA

scikit-opt provide a dozen of operators, see here

Quick start

1. Genetic Algorithm

-> Demo code: examples/demo_ga.py#s1

import numpy as np
from sko.GA import GA


def schaffer(p):
    '''
    This function has plenty of local minimum, with strong shocks
    global minimum at (0,0) with value 0
    '''
    x1, x2 = p
    x = np.square(x1) + np.square(x2)
    return 0.5 + (np.sin(x) - 0.5) / np.square(1 + 0.001 * x)


ga = GA(func=schaffer, n_dim=2, size_pop=50, max_iter=800, lb=[-1, -1], ub=[1, 1], precision=1e-7)
best_x, best_y = ga.run()
print('best_x:', best_x, '\n', 'best_y:', best_y)

plot the result using matplotlib
-> Demo code: examples/demo_ga.py#s2

import pandas as pd
import matplotlib.pyplot as plt

Y_history = pd.DataFrame(ga.all_history_Y)
fig, ax = plt.subplots(2, 1)
ax[0].plot(Y_history.index, Y_history.values, '.', color='red')
Y_history.min(axis=1).cummin().plot(kind='line')
plt.show()

Figure_1-1

1.1 Genetic Algorithm for TSP(Travelling Salesman Problem)

Just import the GA_TSP, it overloads the crossover, mutation to solve the TSP

Firstly, prepare your data (the distance matrix). Here I generate the data randomly as a demo:
-> Demo code: examples/demo_ga_tsp.py#s1

import numpy as np
from scipy import spatial
import matplotlib.pyplot as plt

num_points = 8

points_coordinate = np.random.rand(num_points, 2)  # generate coordinate of points
distance_matrix = spatial.distance.cdist(points_coordinate, points_coordinate, metric='euclidean')


def cal_total_distance(routine):
    '''The objective function. input routine, return total distance.
    cal_total_distance(np.arange(num_points))
    '''
    num_points, = routine.shape
    return sum([distance_matrix[routine[i % num_points], routine[(i + 1) % num_points]] for i in range(num_points)])

Do GA
-> Demo code: examples/demo_ga_tsp.py#s2

from sko.GA import GA_TSP

ga_tsp = GA_TSP(func=cal_total_distance, n_dim=num_points, size_pop=300, max_iter=800, Pm=0.3)
best_points, best_distance = ga_tsp.run()

Plot the result:
-> Demo code: examples/demo_ga_tsp.py#s3

fig, ax = plt.subplots(1, 1)
best_points_ = np.concatenate([best_points, [best_points[0]]])
best_points_coordinate = points_coordinate[best_points_, :]
ax.plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], 'o-r')
plt.show()

GA_TPS

2. PSO(Particle swarm optimization)

2.1 PSO with constraint

-> Demo code: examples/demo_pso.py#s1

def demo_func(x):
    x1, x2, x3 = x
    return x1 ** 2 + (x2 - 0.05) ** 2 + x3 ** 2


from sko.PSO import PSO

pso = PSO(func=demo_func, dim=3, pop=40, max_iter=150, lb=[0, -1, 0.5], ub=[1, 1, 1], w=0.8, c1=0.5, c2=0.5)
pso.run()
print('best_x is ', pso.gbest_x, 'best_y is', pso.gbest_y)

import matplotlib.pyplot as plt

plt.plot(pso.gbest_y_hist)
plt.show()

PSO_TPS

pso_ani
see examples/demo_pso_ani.py

2.2 PSO without constraint

-> Demo code: examples/demo_pso.py#s2

pso = PSO(func=demo_func, dim=3)
fitness = pso.run()
print('best_x is ', pso.gbest_x, 'best_y is', pso.gbest_y)

3. SA(Simulated Annealing)

3.1 SA for multiple function

-> Demo code: examples/demo_sa.py#s1

from sko.SA import SA

demo_func = lambda x: x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2
sa = SA(func=demo_func, x0=[1, 1, 1], T_max=100, T_min=1e-5)
x_star, y_star = sa.run()
print(x_star, y_star)

Plot the result
-> Demo code: examples/demo_sa.py#s2

import matplotlib.pyplot as plt
import pandas as pd

plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()

sa

3.2 SA for TSP

Firstly, prepare your data (the distance matrix). See GA_TSP.

DO SA for TSP
-> Demo code: examples/demo_sa_tsp.py#s2

from sko.SA import SA_TSP

sa_tsp = SA_TSP(func=cal_total_distance, x0=range(num_points), T_max=100, T_min=1, L=10 * num_points)

best_points, best_distance = sa_tsp.run()
print(best_points, best_distance, cal_total_distance(best_points))

plot the result
-> Demo code: examples/demo_sa_tsp.py#s3

from matplotlib.ticker import FormatStrFormatter

fig, ax = plt.subplots(1, 2)

best_points_ = np.concatenate([best_points, [best_points[0]]])
best_points_coordinate = points_coordinate[best_points_, :]
ax[0].plot(sa_tsp.best_y_history)
ax[0].set_xlabel("Distance")
ax[0].set_ylabel("Iteration")
ax[1].plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1],
           marker='o', markerfacecolor='b', color='c', linestyle='-')
ax[1].xaxis.set_major_formatter(FormatStrFormatter('%.3f'))
ax[1].yaxis.set_major_formatter(FormatStrFormatter('%.3f'))
ax[1].set_xlabel("Longitude")
ax[1].set_ylabel("Latitude")
plt.show()

sa

Plot the animation:

sa
see examples/demo_sa_tsp.py

4. ACA (Ant Colony Algorithm) for tsp

-> Demo code: examples/demo_aca_tsp.py#s2

from sko.ACA import ACA_TSP

aca = ACA_TSP(func=cal_total_distance, n_dim=8,
              size_pop=10, max_iter=20,
              distance_matrix=distance_matrix)

best_x, best_y = aca.run()

ACA

5. immune algorithm (IA)

-> Demo code: examples/demo_ia.py#s2

from sko.IA import IA_TSP

ia_tsp = IA_TSP(func=cal_total_distance, n_dim=num_points, pop=500, max_iter=2000, Pm=0.2,
                T=0.7, alpha=0.95)
best_points, best_distance = ia_tsp.run()
print('best routine:', best_points, 'best_distance:', best_distance)

IA

6. artificial fish swarm algorithm (AFSA)

-> Demo code: examples/demo_asfs.py#s1

def func(x):
    x1, x2 = x
    return 1 / x1 ** 2 + x1 ** 2 + 1 / x2 ** 2 + x2 ** 2


from sko.ASFA import ASFA

asfa = ASFA(func, n_dim=2, size_pop=50, max_iter=300,
            max_try_num=100, step=0.5, visual=0.3,
            q=0.98, delta=0.5)
best_x, best_y = asfa.fit()
print(best_x, best_y)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-opt-0.3.4.tar.gz (18.1 kB view hashes)

Uploaded Source

Built Distribution

scikit_opt-0.3.4-py3-none-any.whl (20.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page