Skip to main content

TableOne

Project description

https://travis-ci.org/tompollard/tableone.svg?branch=master https://zenodo.org/badge/DOI/10.5281/zenodo.837898.svg

tableone is a package for researchers who need to create Table 1, summary statistics for a patient population. It was inspired by the R package of the same name by Yoshida and Bohn. A demo Jupyter Notebook is available at: https://github.com/tompollard/tableone/blob/master/tableone.ipynb

Installation

The distribution is hosted on PyPI and directly installable via pip without needing to clone or download this repository. To install the package from PyPI, run the following command in your terminal:

pip install tableone

Example

  1. Import libraries:

    from tableone import TableOne
    import pandas as pd
  2. Load sample data into a pandas dataframe:

    url="https://raw.githubusercontent.com/tompollard/data/master/primary-biliary-cirrhosis/pbc.csv"
    data=pd.read_csv(url)
  3. Optionally, a list of columns to be included in Table 1:

    columns = ['time','age','bili','chol','albumin','copper',
           'alk.phos','ast','trig','platelet','protime',
           'status', 'ascites', 'hepato', 'spiders', 'edema',
           'stage', 'sex', 'trt']
  4. Optionally, a list of columns containing categorical variables:

    categorical = ['status', 'ascites', 'hepato', 'spiders', 'edema',
           'stage', 'sex']
  5. Optionally, a categorical variable for stratification and a list of non-normal variables:

    groupby = 'trt'
    nonnormal = ['bili']
  6. Create an instance of TableOne with the input arguments:

    mytable = TableOne(data, columns, categorical, groupby, nonnormal)
  7. Type the name of the instance in an interpreter:

    mytable.tableone
  8. …which prints the following table to screen:

    Stratified by trt
                           1.0                2.0                  isnull
    ---------------------  -----------------  -----------------  --------
    n                      158                154                     106
    time (mean (std))      2015.62 (1094.12)  1996.86 (1155.93)         0
    age (mean (std))       51.42 (11.01)      48.58 (9.96)              0
    bili (median [IQR])    1.40 [0.80,3.20]   1.30 [0.72,3.60]          0
    chol (mean (std))      365.01 (209.54)    373.88 (252.48)         134
    albumin (mean (std))   3.52 (0.44)        3.52 (0.40)               0
    copper (mean (std))    97.64 (90.59)      97.65 (80.49)           108
    alk.phos (mean (std))  2021.30 (2183.44)  1943.01 (2101.69)       106
    ast (mean (std))       120.21 (54.52)     124.97 (58.93)          106
    trig (mean (std))      124.14 (71.54)     125.25 (58.52)          136
    platelet (mean (std))  258.75 (100.32)    265.20 (90.73)           11
    protime (mean (std))   10.65 (0.85)       10.80 (1.14)              2
    status (n (%))                                                      0
    0                      83 (52.53)         85 (55.19)
    1                      10 (6.33)          9 (5.84)
    2                      65 (41.14)         60 (38.96)
    ascites (n (%))                                                   106
    0.0                    144 (91.14)        144 (93.51)
    1.0                    14 (8.86)          10 (6.49)
    hepato (n (%))                                                    106
    0.0                    85 (53.80)         67 (43.51)
    1.0                    73 (46.20)         87 (56.49)
    spiders (n (%))                                                   106
    0.0                    113 (71.52)        109 (70.78)
    1.0                    45 (28.48)         45 (29.22)
    edema (n (%))                                                       0
    0.0                    132 (83.54)        131 (85.06)
    0.5                    16 (10.13)         13 (8.44)
    1.0                    10 (6.33)          10 (6.49)
    stage (n (%))                                                       6
    1.0                    12 (7.59)          4 (2.60)
    2.0                    35 (22.15)         32 (20.78)
    3.0                    56 (35.44)         64 (41.56)
    4.0                    55 (34.81)         54 (35.06)
    sex (n (%))                                                         0
    f                      137 (86.71)        139 (90.26)
    m                      21 (13.29)         15 (9.74)
  9. Compute p values by setting the pval argument to True. The name of the test that was used is also displayed:

    mytable = TableOne(data, columns, categorical, groupby, nonnormal, pval=True)
  10. …which prints:

    Stratified by trt
                           1.0                2.0                  isnull  pval    testname
    ---------------------  -----------------  -----------------  --------  ------  --------------
    n                      158                154                     106
    time (mean (std))      2015.62 (1094.12)  1996.86 (1155.93)         0  0.883   One_way_ANOVA
    age (mean (std))       51.42 (11.01)      48.58 (9.96)              0  0.018   One_way_ANOVA
    bili (median [IQR])    1.40 [0.80,3.20]   1.30 [0.72,3.60]          0  0.842   Kruskal-Wallis
    chol (mean (std))      365.01 (209.54)    373.88 (252.48)         134  0.748   One_way_ANOVA
    albumin (mean (std))   3.52 (0.44)        3.52 (0.40)               0  0.874   One_way_ANOVA
    copper (mean (std))    97.64 (90.59)      97.65 (80.49)           108  0.999   One_way_ANOVA
    alk.phos (mean (std))  2021.30 (2183.44)  1943.01 (2101.69)       106  0.747   One_way_ANOVA
    ast (mean (std))       120.21 (54.52)     124.97 (58.93)          106  0.460   One_way_ANOVA
    trig (mean (std))      124.14 (71.54)     125.25 (58.52)          136  0.886   One_way_ANOVA
    platelet (mean (std))  258.75 (100.32)    265.20 (90.73)           11  0.555   One_way_ANOVA
    protime (mean (std))   10.65 (0.85)       10.80 (1.14)              2  0.197   One_way_ANOVA
    status (n (%))                                                      0  0.894   Chi-squared
    0                      83 (52.53)         85 (55.19)
    1                      10 (6.33)          9 (5.84)
    2                      65 (41.14)         60 (38.96)
    ascites (n (%))                                                   106  0.567   Chi-squared
    0.0                    144 (91.14)        144 (93.51)
    1.0                    14 (8.86)          10 (6.49)
    hepato (n (%))                                                    106  0.088   Chi-squared
    0.0                    85 (53.80)         67 (43.51)
    1.0                    73 (46.20)         87 (56.49)
    spiders (n (%))                                                   106  0.985   Chi-squared
    0.0                    113 (71.52)        109 (70.78)
    1.0                    45 (28.48)         45 (29.22)
    edema (n (%))                                                       0  0.877   Chi-squared
    0.0                    132 (83.54)        131 (85.06)
    0.5                    16 (10.13)         13 (8.44)
    1.0                    10 (6.33)          10 (6.49)
    stage (n (%))                                                       6  nan     Not tested
    1.0                    12 (7.59)          4 (2.60)
    2.0                    35 (22.15)         32 (20.78)
    3.0                    56 (35.44)         64 (41.56)
    4.0                    55 (34.81)         54 (35.06)
    sex (n (%))                                                         0  0.421   Chi-squared
    f                      137 (86.71)        139 (90.26)
    m                      21 (13.29)         15 (9.74)
  11. Tables can be exported to file in various formats, including LaTeX, Markdown, CSV, and HTML. Files are exported by calling the to_format method on the DataFrame. For example, mytable can be exported to a CSV named ‘mytable.csv’ with the following command:

    mytable.tableone.to_csv('mytable.csv')

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tableone-0.3.3.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

tableone-0.3.3-py2.py3-none-any.whl (9.9 kB view details)

Uploaded Python 2Python 3

File details

Details for the file tableone-0.3.3.tar.gz.

File metadata

  • Download URL: tableone-0.3.3.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for tableone-0.3.3.tar.gz
Algorithm Hash digest
SHA256 22f8ec57d7738b4e66d819965e3e1ee247fcf0edff1c08ee298c3b6a707e12be
MD5 ecac9082b3c1e218ce736ebdabddc55a
BLAKE2b-256 942e8a1e648c0d246ec542da139888c6145133988f7889bbe38b712c9decd42c

See more details on using hashes here.

File details

Details for the file tableone-0.3.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for tableone-0.3.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 cb1bb1123fb16d21d80dcb1fa97288600f52545a4971a66ed415ce6a32346e47
MD5 f15028dd9c470a088696f263aaab2ff5
BLAKE2b-256 692b2af9924e2d40f215662bb2246d09b5a24392f6d73610b7c60f7171737e69

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page