Toy Neural Network Generator.
Project description
Toy Neural Network Generator
Installation
$ pip install tnng
Simple Model Generator
#!/usr/bin/env python
import torch
import torch.nn as nn
import torchex.nn as exnn
from tnng import Generator, MultiHeadLinkedListLayer
m = MultiHeadLinkedListLayer()
# all layers can be lazy evaluation.
m.append([exnn.Linear(64), exnn.Linear(128), exnn.Linear(256)])
m.append([nn.ReLU(), nn.ELU()])
m.append([exnn.Linear(16), exnn.Linear(32), exnn.Linear(64),])
m.append([nn.ReLU(), nn.ELU()])
m.append([exnn.Linear(10)])
g = Generator(m)
x = torch.randn(128, 256)
class Model(nn.Module):
def __init__(self, idx=0):
super(Model, self).__init__()
self.model = nn.ModuleList([l[0] for l in g[idx]])
def forward(self, x):
for m in self.model:
x = m(x)
return x
m = Model(0)
o = m(x)
'''
ModuleList(
(0): Linear(in_features=256, out_features=64, bias=True)
(1): ReLU()
(2): Linear(in_features=64, out_features=16, bias=True)
(3): ReLU()
(4): Linear(in_features=16, out_features=10, bias=True)
)
'''
Multimodal Model Generator
#!/usr/bin/env python
import torch
import torch.nn as nn
import torchex.nn as exnn
from tnng import Generator, MultiHeadLinkedListLayer
m = MultiHeadLinkedListLayer()
m1 = MultiHeadLinkedListLayer()
# all layers can be lazy evaluation.
m.append([exnn.Linear(64), exnn.Linear(128), exnn.Linear(256)])
m.append([nn.ReLU(), nn.ELU()])
m.append([exnn.Linear(16), exnn.Linear(32), exnn.Linear(64),])
m.append([nn.ReLU(), nn.ELU()])
m1.append([exnn.Conv2d(16, 1), exnn.Conv2d(32, 1), exnn.Conv2d(64, 1)])
m1.append([nn.MaxPool2d(2), nn.AvgPool2d(2)])
m1.append([nn.ReLU(), nn.ELU(), nn.Identity()])
m1.append([exnn.Conv2d(32, 1), exnn.Conv2d(64, 1), exnn.Conv2d(128, 1)])
m1.append([nn.MaxPool2d(2), nn.AvgPool2d(2)])
m1.append([exnn.Flatten(),])
m = m + m1
m.append([exnn.Linear(128)])
m.append([nn.ReLU(), nn.ELU(), nn.Identity()])
m.append([exnn.Linear(10)])
g = Generator(m)
class Model(nn.Module):
def __init__(self, idx=0):
super(Model, self).__init__()
self.model = g[idx]
for layers in self.model:
for layer in layers:
self.add_module(f'{layer}', layer)
def forward(self, x, img):
for m in self.model:
if len(m) == 2:
if m[0] is not None:
x = m[0](x)
img = m[1](img)
elif len(m) == 1 and m[0] is None:
x = torch.cat((x, img), 1)
else:
x = m[0](x)
return x
x = torch.randn(128, 256)
img = torch.randn(128, 3, 28, 28)
m = Model()
o = m(x, img)
print(o.shape)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tnng-0.3.1.tar.gz
(4.8 kB
view details)
Built Distribution
File details
Details for the file tnng-0.3.1.tar.gz
.
File metadata
- Download URL: tnng-0.3.1.tar.gz
- Upload date:
- Size: 4.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2.post20191203 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f7380b5df81d8ccf526a08c0e04df06cfb92364aa39f9ac887261df9e1cc3fc8
|
|
MD5 |
97d7124d8a0a32de9f4cffd0b4126ba3
|
|
BLAKE2b-256 |
4a1d21655d67eb98706a9643264834820484b745e3e3d901f04708df8fedcd7e
|
File details
Details for the file tnng-0.3.1-py2.py3-none-any.whl
.
File metadata
- Download URL: tnng-0.3.1-py2.py3-none-any.whl
- Upload date:
- Size: 5.1 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2.post20191203 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
d43980d7c61c0c534bcc973e1c3042200cfefcce03537ddfb0ba555d735abd1f
|
|
MD5 |
1b380b9d0b8b165686e7703bc6deb776
|
|
BLAKE2b-256 |
0f6068e601918cab51e8b0daba4e29f515c6702746cad7f4a8e238562a2178a9
|