Skip to main content

Toy Neural Network Generator.

Project description

Github CI/CD

Toy Neural Network Generator

Installation

$ pip install tnng

Simple Model Generator

#!/usr/bin/env python
import torch
import torch.nn as nn
import torchex.nn as exnn
from tnng import Generator, MultiHeadLinkedListLayer

m = MultiHeadLinkedListLayer()
# all layers can be lazy evaluation.
m.append([exnn.Linear(64), exnn.Linear(128), exnn.Linear(256)])
m.append([nn.ReLU(), nn.ELU()])
m.append([exnn.Linear(16), exnn.Linear(32), exnn.Linear(64),])
m.append([nn.ReLU(), nn.ELU()])
m.append([exnn.Linear(10)])

g = Generator(m)

x = torch.randn(128, 256)

class Model(nn.Module):
    def __init__(self, idx=0):
        super(Model, self).__init__()
        self.model = nn.ModuleList([l[0] for l in g[idx]])

    def forward(self, x):
        for m in self.model:
            x = m(x)
        return x

m = Model(0)
o = m(x)

'''
ModuleList(
  (0): Linear(in_features=256, out_features=64, bias=True)
  (1): ReLU()
  (2): Linear(in_features=64, out_features=16, bias=True)
  (3): ReLU()
  (4): Linear(in_features=16, out_features=10, bias=True)
)
'''

Multimodal Model Generator

#!/usr/bin/env python
import torch
import torch.nn as nn
import torchex.nn as exnn
from tnng import Generator, MultiHeadLinkedListLayer

m = MultiHeadLinkedListLayer()
m1 = MultiHeadLinkedListLayer()
# all layers can be lazy evaluation.
m.append([exnn.Linear(64), exnn.Linear(128), exnn.Linear(256)])
m.append([nn.ReLU(), nn.ELU()])
m.append([exnn.Linear(16), exnn.Linear(32), exnn.Linear(64),])
m.append([nn.ReLU(), nn.ELU()])

m1.append([exnn.Conv2d(16, 1), exnn.Conv2d(32, 1), exnn.Conv2d(64, 1)])
m1.append([nn.MaxPool2d(2), nn.AvgPool2d(2)])
m1.append([nn.ReLU(), nn.ELU(), nn.Identity()])
m1.append([exnn.Conv2d(32, 1), exnn.Conv2d(64, 1), exnn.Conv2d(128, 1)])
m1.append([nn.MaxPool2d(2), nn.AvgPool2d(2)])
m1.append([exnn.Flatten(),])

m = m + m1
m.append([exnn.Linear(128)])
m.append([nn.ReLU(), nn.ELU(), nn.Identity()])
m.append([exnn.Linear(10)])


g = Generator(m)
class Model(nn.Module):
    def __init__(self, idx=0):
        super(Model, self).__init__()
        self.model = g[idx]
        for layers in self.model:
            for layer in layers:
                self.add_module(f'{layer}', layer)

    def forward(self, x, img):
        for m in self.model:
            if len(m) == 2:
                if m[0] is not None:
                    x = m[0](x)
                img = m[1](img)
            elif len(m) == 1 and m[0] is None:
                x = torch.cat((x, img), 1)
            else:
                x = m[0](x)
        return x

x = torch.randn(128, 256)
img = torch.randn(128, 3, 28, 28)
m = Model()
o = m(x, img)
print(o.shape)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for tnng, version 0.4.0
Filename, size File type Python version Upload date Hashes
Filename, size tnng-0.4.0-py2.py3-none-any.whl (5.5 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size tnng-0.4.0.tar.gz (5.1 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page