Skip to main content

Toy Neural Network Generator.

Project description

Github CI/CD

Toy Neural Network Generator

Installation

$ pip install tnng

Simple Model Generator

#!/usr/bin/env python
import torch
import torch.nn as nn
import torchex.nn as exnn
from tnng import Generator, MultiHeadLinkedListLayer

m = MultiHeadLinkedListLayer()
# all layers can be lazy evaluation.
m.append([exnn.Linear(64), exnn.Linear(128), exnn.Linear(256)])
m.append([nn.ReLU(), nn.ELU()])
m.append([exnn.Linear(16), exnn.Linear(32), exnn.Linear(64),])
m.append([nn.ReLU(), nn.ELU()])
m.append([exnn.Linear(10)])

g = Generator(m)

x = torch.randn(128, 256)

class Model(nn.Module):
    def __init__(self, idx=0):
        super(Model, self).__init__()
        self.model = nn.ModuleList([l[0] for l in g[idx]])

    def forward(self, x):
        for m in self.model:
            x = m(x)
        return x

m = Model(0)
o = m(x)

'''
ModuleList(
  (0): Linear(in_features=256, out_features=64, bias=True)
  (1): ReLU()
  (2): Linear(in_features=64, out_features=16, bias=True)
  (3): ReLU()
  (4): Linear(in_features=16, out_features=10, bias=True)
)
'''

Multimodal Model Generator

#!/usr/bin/env python
import torch
import torch.nn as nn
import torchex.nn as exnn
from tnng import Generator, MultiHeadLinkedListLayer

m = MultiHeadLinkedListLayer()
m1 = MultiHeadLinkedListLayer()
# all layers can be lazy evaluation.
m.append([exnn.Linear(64), exnn.Linear(128), exnn.Linear(256)])
m.append([nn.ReLU(), nn.ELU()])
m.append([exnn.Linear(16), exnn.Linear(32), exnn.Linear(64),])
m.append([nn.ReLU(), nn.ELU()])

m1.append([exnn.Conv2d(16, 1), exnn.Conv2d(32, 1), exnn.Conv2d(64, 1)])
m1.append([nn.MaxPool2d(2), nn.AvgPool2d(2)])
m1.append([nn.ReLU(), nn.ELU(), nn.Identity()])
m1.append([exnn.Conv2d(32, 1), exnn.Conv2d(64, 1), exnn.Conv2d(128, 1)])
m1.append([nn.MaxPool2d(2), nn.AvgPool2d(2)])
m1.append([exnn.Flatten(),])

m = m + m1
m.append([exnn.Linear(128)])
m.append([nn.ReLU(), nn.ELU(), nn.Identity()])
m.append([exnn.Linear(10)])


g = Generator(m)
class Model(nn.Module):
    def __init__(self, idx=0):
        super(Model, self).__init__()
        self.model = g[idx]
        for layers in self.model:
            for layer in layers:
                self.add_module(f'{layer}', layer)

    def forward(self, x, img):
        for m in self.model:
            if len(m) == 2:
                if m[0] is not None:
                    x = m[0](x)
                img = m[1](img)
            elif len(m) == 1 and m[0] is None:
                x = torch.cat((x, img), 1)
            else:
                x = m[0](x)
        return x

x = torch.randn(128, 256)
img = torch.randn(128, 3, 28, 28)
m = Model()
o = m(x, img)
print(o.shape)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tnng-0.4.0.tar.gz (5.1 kB view details)

Uploaded Source

Built Distribution

tnng-0.4.0-py2.py3-none-any.whl (5.5 kB view details)

Uploaded Python 2Python 3

File details

Details for the file tnng-0.4.0.tar.gz.

File metadata

  • Download URL: tnng-0.4.0.tar.gz
  • Upload date:
  • Size: 5.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2.post20191203 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.5

File hashes

Hashes for tnng-0.4.0.tar.gz
Algorithm Hash digest
SHA256 ae30a2a8df888611b316e82073d3209761495b9b31bdf8d54b0482966254c9a8
MD5 4edbdaef027440e70608692b7234f568
BLAKE2b-256 01c353d38668b75360e14858449c3bef0a1916a1d346f5a78f6b4db519dd380b

See more details on using hashes here.

File details

Details for the file tnng-0.4.0-py2.py3-none-any.whl.

File metadata

  • Download URL: tnng-0.4.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 5.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2.post20191203 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.5

File hashes

Hashes for tnng-0.4.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 176658a6d4e060d32113bed7af2a40228e5f63da58c4d61e98aeff91e85db5c5
MD5 d850aeb3258a6efffb6bdff1b85b0ba3
BLAKE2b-256 9c6c9d70fe4f18c53f3164a2cb70246edee530ca90ac1ad46970e7ba6a46618e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page