Skip to main content

A minimal implementation of chunked, compressed, N-dimensional arrays for Python.

Project description

A minimal implementation of chunked, compressed, N-dimensional arrays for Python.

Installation

Install from GitHub (requires NumPy and Cython pre-installed):

$ pip install -U git+https://github.com/alimanfoo/zarr.git@master

Status

Highly experimental, pre-alpha. Bug reports and pull requests very welcome.

Design goals

  • Chunking in multiple dimensions

  • Resize any dimension

  • Concurrent reads

  • Concurrent writes

  • Release the GIL during compression and decompression

Usage

Create an array:

>>> import numpy as np
>>> import zarr
>>> z = zarr.empty((10000, 1000), dtype='i4', chunks=(1000, 100))
>>> z
zarr.ext.Array((10000, 1000), int32, chunks=(1000, 100), cname='blosclz', clevel=5, shuffle=1)
  nbytes: 38.1M; cbytes: 0

Fill it with some data:

>>> z[:] = np.arange(10000000, dtype='i4').reshape(10000, 1000)
>>> z
zarr.ext.Array((10000, 1000), int32, chunks=(1000, 100), cname='blosclz', clevel=5, shuffle=1)
  nbytes: 38.1M; cbytes: 2.0M; ratio: 19.3

Obtain a NumPy array by slicing:

>>> z[:]
array([[      0,       1,       2, ...,     997,     998,     999],
       [   1000,    1001,    1002, ...,    1997,    1998,    1999],
       [   2000,    2001,    2002, ...,    2997,    2998,    2999],
       ...,
       [9997000, 9997001, 9997002, ..., 9997997, 9997998, 9997999],
       [9998000, 9998001, 9998002, ..., 9998997, 9998998, 9998999],
       [9999000, 9999001, 9999002, ..., 9999997, 9999998, 9999999]], dtype=int32)
>>> z[:100]
array([[    0,     1,     2, ...,   997,   998,   999],
       [ 1000,  1001,  1002, ...,  1997,  1998,  1999],
       [ 2000,  2001,  2002, ...,  2997,  2998,  2999],
       ...,
       [97000, 97001, 97002, ..., 97997, 97998, 97999],
       [98000, 98001, 98002, ..., 98997, 98998, 98999],
       [99000, 99001, 99002, ..., 99997, 99998, 99999]], dtype=int32)
>>> z[:, :100]
array([[      0,       1,       2, ...,      97,      98,      99],
       [   1000,    1001,    1002, ...,    1097,    1098,    1099],
       [   2000,    2001,    2002, ...,    2097,    2098,    2099],
       ...,
       [9997000, 9997001, 9997002, ..., 9997097, 9997098, 9997099],
       [9998000, 9998001, 9998002, ..., 9998097, 9998098, 9998099],
       [9999000, 9999001, 9999002, ..., 9999097, 9999098, 9999099]], dtype=int32)

Resize the array and add more data:

>>> z.resize(20000, 1000)
>>> z
zarr.ext.Array((20000, 1000), int32, chunks=(1000, 100), cname='blosclz', clevel=5, shuffle=1)
  nbytes: 76.3M; cbytes: 2.0M; ratio: 38.5
>>> z[10000:, :] = np.arange(10000000, dtype='i4').reshape(10000, 1000)
>>> z
zarr.ext.Array((20000, 1000), int32, chunks=(1000, 100), cname='blosclz', clevel=5, shuffle=1)
  nbytes: 76.3M; cbytes: 4.0M; ratio: 19.3

For convenience, an append() method is also available, which can be used to append data to any axis:

>>> a = np.arange(10000000, dtype='i4').reshape(10000, 1000)
>>> z = zarr.array(a, chunks=(1000, 100))
>>> z
zarr.ext.Array((10000, 1000), int32, chunks=(1000, 100), cname='blosclz', clevel=5, shuffle=1)
  nbytes: 38.1M; cbytes: 2.0M; ratio: 19.3
>>> z.append(a+a)
>>> z
zarr.ext.Array((20000, 1000), int32, chunks=(1000, 100), cname='blosclz', clevel=5, shuffle=1)
  nbytes: 76.3M; cbytes: 3.6M; ratio: 21.2
>>> z.append(np.vstack([a, a]), axis=1)
>>> z
zarr.ext.Array((20000, 2000), int32, chunks=(1000, 100), cname='blosclz', clevel=5, shuffle=1)
  nbytes: 152.6M; cbytes: 7.6M; ratio: 20.2

Tuning

zarr is designed for use in parallel computations working chunk-wise over data. Try it with dask.array.

zarr is optimised for accessing and storing data in contiguous slices, of the same size or larger than chunks. It is not and will never be optimised for single item access.

Chunks sizes >= 1M are generally good. Optimal chunk shape will depend on the correlation structure in your data.

Acknowledgments

zarr uses c-blosc internally for compression and decompression and borrows code heavily from bcolz.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zarr-0.2.6.tar.gz (421.3 kB view details)

Uploaded Source

File details

Details for the file zarr-0.2.6.tar.gz.

File metadata

  • Download URL: zarr-0.2.6.tar.gz
  • Upload date:
  • Size: 421.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for zarr-0.2.6.tar.gz
Algorithm Hash digest
SHA256 70de7855ff20f84c64c7c3b363a6a3ab4821f32abbe8aa47e1242b721561fa6c
MD5 884d66574922dc9f7e96d0afd5efffc4
BLAKE2b-256 31228ad346f3323d6d0dfd3832fcc5c375cf77f1f7f9198374223786862d9360

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page