Skip to main content

Multilabel marching cubes and simplification of volumetric data.

Project description

zmesh: Multi-Label Marching Cubes & Mesh Simplification

Tests PyPI version

from zmesh import Mesher

labels = ... # some dense volumetric labeled image
mesher = Mesher( (4,4,40) ) # anisotropy of image

# initial marching cubes pass
# close controls whether meshes touching
# the image boundary are left open or closed
mesher.mesh(labels, close=False) 

meshes = []
for obj_id in mesher.ids():
  meshes.append(
    mesher.get(
      obj_id, 
      normals=False, # whether to calculate normals or not

      # tries to reduce triangles by this factor
      # 0 disables simplification
      reduction_factor=100, 

      # Max tolerable error in physical distance
      # note: if max_error is not set, the max error
      # will be set equivalent to one voxel along the 
      # smallest dimension.
      max_error=8,
      # whether meshes should be centered in the voxel
      # on (0,0,0) [False] or (0.5,0.5,0.5) [True]
      voxel_centered=False, 
    )
  )
  mesher.erase(obj_id) # delete high res mesh

mesher.clear() # clear memory retained by mesher

mesh = meshes[0]
mesh = mesher.simplify(
  mesh, 
  # same as reduction_factor in get
  reduction_factor=100, 
  # same as max_error in get
  max_error=40, 
  compute_normals=False, # whether to also compute face normals
) # apply simplifier to a pre-existing mesh

# compute normals on a pre-existing mesh
mesh = zmesh.compute_normals(mesh) 

mesh.vertices
mesh.faces 
mesh.normals
mesh.triangles() # compute triangles from vertices and faces

# Extremely common obj format
with open('iconic_doge.obj', 'wb') as f:
  f.write(mesh.to_obj())

# Common binary format
with open('iconic_doge.ply', 'wb') as f:
  f.write(mesh.to_ply())

# Neuroglancer Precomputed format
with open('10001001:0', 'wb') as f:
  f.write(mesh.to_precomputed())

Note: As of the latest version, mesher.get_mesh has been deprecated in favor of mesher.get which fixes a long standing bug where you needed to transpose your data in order to get a mesh in the correct orientation.

Installation

If binaries are not available for your system, ensure you have a C++ compiler installed.

pip install zmesh

Performance Tuning & Notes

  • The mesher will consume about double memory in 64 bit mode if the size of the object exceeds <1023, 1023, 511> on the x, y, or z axes. This is due to a limitation of the 32-bit format.
  • The mesher is ambidextrous, it can handle C or Fortran order arrays.
  • The maximum vertex range supported .simplify after converting to voxel space is 220 (appx. 1M) due to the packed 64-bit vertex format.

Related Projects

  • zi_lib - zmesh makes heavy use of Aleks' C++ library.
  • Igneous - Visualization of connectomics data using cloud computing.

Credits

Thanks to Aleks Zlateski for creating and sharing this beautiful mesher.

Later changes by Will Silversmith, Nico Kemnitz, and Jingpeng Wu.

References

  1. W. Lorensen and H. Cline. "Marching Cubes: A High Resolution 3D Surface Construction Algorithm". pp 163-169. Computer Graphics, Volume 21, Number 4, July 1987. (link)
  2. M. Garland and P. Heckbert. "Surface simplification using quadric error metrics". SIGGRAPH '97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques. Pages 209–216. August 1997. doi: 10.1145/258734.258849 (link)
  3. H. Hoppe. "New Quadric Metric for Simplifying Meshes with Appearance Attributes". IEEE Visualization 1999 Conference. pp. 59-66. doi: 10.1109/VISUAL.1999.809869 (link)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zmesh-1.9.0.tar.gz (268.7 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

zmesh-1.9.0-cp314-cp314-macosx_11_0_arm64.whl (192.4 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

zmesh-1.9.0-cp314-cp314-macosx_10_9_x86_64.whl (221.8 kB view details)

Uploaded CPython 3.14macOS 10.9+ x86-64

zmesh-1.9.0-cp313-cp313-win_amd64.whl (181.0 kB view details)

Uploaded CPython 3.13Windows x86-64

zmesh-1.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

zmesh-1.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

zmesh-1.9.0-cp313-cp313-macosx_11_0_arm64.whl (192.1 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

zmesh-1.9.0-cp313-cp313-macosx_10_9_x86_64.whl (222.0 kB view details)

Uploaded CPython 3.13macOS 10.9+ x86-64

zmesh-1.9.0-cp312-cp312-win_amd64.whl (180.9 kB view details)

Uploaded CPython 3.12Windows x86-64

zmesh-1.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

zmesh-1.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

zmesh-1.9.0-cp312-cp312-macosx_11_0_arm64.whl (193.0 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

zmesh-1.9.0-cp312-cp312-macosx_10_9_x86_64.whl (223.1 kB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

zmesh-1.9.0-cp311-cp311-win_amd64.whl (184.2 kB view details)

Uploaded CPython 3.11Windows x86-64

zmesh-1.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

zmesh-1.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

zmesh-1.9.0-cp311-cp311-macosx_11_0_arm64.whl (195.2 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

zmesh-1.9.0-cp311-cp311-macosx_10_9_x86_64.whl (225.0 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

zmesh-1.9.0-cp310-cp310-win_amd64.whl (184.0 kB view details)

Uploaded CPython 3.10Windows x86-64

zmesh-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

zmesh-1.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

zmesh-1.9.0-cp310-cp310-macosx_11_0_arm64.whl (193.4 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

zmesh-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl (223.5 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

zmesh-1.9.0-cp39-cp39-win_amd64.whl (184.1 kB view details)

Uploaded CPython 3.9Windows x86-64

zmesh-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

zmesh-1.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

zmesh-1.9.0-cp39-cp39-macosx_11_0_arm64.whl (193.6 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

zmesh-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl (223.7 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

zmesh-1.9.0-cp38-cp38-win_amd64.whl (186.0 kB view details)

Uploaded CPython 3.8Windows x86-64

zmesh-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

zmesh-1.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

File details

Details for the file zmesh-1.9.0.tar.gz.

File metadata

  • Download URL: zmesh-1.9.0.tar.gz
  • Upload date:
  • Size: 268.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.6

File hashes

Hashes for zmesh-1.9.0.tar.gz
Algorithm Hash digest
SHA256 fcac56b2f83db9b70fcb909a063d3c33e3076ee68fe62919d1bec2978f949111
MD5 0273204989053f8fc7d439a16b87b4d2
BLAKE2b-256 5b2adc7c93bee0d5e7260b9f3d1efbc857184b1aef6670b48b2bcd29b0e01d42

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a686dc19603aeb86622727809e86f99246987f4a9bba66b04868478c54443357
MD5 cbbbce68ef73f8a31d949938b3bb10d3
BLAKE2b-256 ebf989db959d8d8c0d450b87fddbaab7194beaa6d476cf9d9bed01f6f3c2a2db

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp314-cp314-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp314-cp314-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 36c2ddb0ec2a333a228396106b68f7e1505261634d1d139d8cbad11ee3baf493
MD5 bf0100ab450ab1ad5227bd3199c31bc5
BLAKE2b-256 73144b9c4be49626188c02e10a40e26cde3e96c65567feceef06020791b32fc8

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: zmesh-1.9.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 181.0 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.6

File hashes

Hashes for zmesh-1.9.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 ca89bc2a77799fa3d307d501be49dc8f6573b12f16d9362e3def0aa267956b99
MD5 ce9659a0277eada4d0a27e8539acc385
BLAKE2b-256 cd0682ac248155484a9b9a5747675be0c075f3d8705aa6b494a958e74edd86d0

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03432bc1087ddaf623920982d9546bcbc0e9bca3e714e6ffc6c30efa703d8fdd
MD5 45facd4a806357ebf67eddbb20986ab5
BLAKE2b-256 d9e91be22edb0aef114191581b39b9a967a16230c906794255d849b17f6be2a3

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 969aea7589fe53e55b156c8ef84fcf0568e64602efa8f720a5fa1f50f4d115a7
MD5 b3f6510a8013a5ba5767e20aefc26b55
BLAKE2b-256 18b7614391e24b909a816ff3cc5653f30545a3efcf49d77717ab2f73282e28b7

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 92f9dad758f6d66800ad4dda759bb36d2c857066468428729fc8e10ff4171d8e
MD5 0132920b0987da82850a5d0e51f99486
BLAKE2b-256 791fb040459f8b95709bbf7e109950c8357141acf150f263a83da2d55ae08d9b

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp313-cp313-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp313-cp313-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 85b6863d7df0e021acf34fac3d4d87a56118fbbf9dcc6981768288f518a98b82
MD5 6b6a962256ee1d5fd98cf2a5e7cac4e3
BLAKE2b-256 c9d852054f7babab3121d2e0e92dd4486d0490482059e5b50aaaadf55d4d4139

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: zmesh-1.9.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 180.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.6

File hashes

Hashes for zmesh-1.9.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1060158fdf9190354aabe603052bece6f5c5569fa9d45f632c6dad8bf989e47c
MD5 f7de860047d83ede93c74b983978338a
BLAKE2b-256 b8b9dac98ff1ee31d8f02d8dbb45cc8aa3fa702fd45680de7ea14fb3a13742ec

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1fb2dc224f6f1e5fe5891f844552cf6d3d5235cea662ea32eac152b64f90321
MD5 dd29ed0734b7d8c065383344d95b2ac8
BLAKE2b-256 4d94a8ab7ecbb94b547b6af060aa8e5a2e607564a4f063bce33fb5c149ef4b07

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e52259c37d85bf2c996ba464f28e68d5073ad4b959966f6fde2758f22da12e70
MD5 a13b03255fab0fc001f659885f4cb750
BLAKE2b-256 779daae89561c2823ca49bd13c777efa5fd8f5b051eb2fe57fa8819c350f602d

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 804bb2c402ef58862066502723ada97383e7de3aebd5cbb57f8fdd45155c5a04
MD5 bea7bf294ec699d54939728e6223a7ee
BLAKE2b-256 8b67b5f72afa013d0b42682ced69e7741712244471ad36ebe5495d169aae6246

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eb2e99a763291841025dffbc9cb2198a1e7ba31ecad3d1a10d5acaf9d289cb9d
MD5 9f91ace761f5a02a00a9c50442466479
BLAKE2b-256 3ef343612a5da1bd33eb600e8a16346c59dd96be6d275645a8d54e0a81caa1f4

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: zmesh-1.9.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 184.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.6

File hashes

Hashes for zmesh-1.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 dff62b50170aafee7e7cce2822da8015d7a93c7820dd66ec2f47b875a8888c08
MD5 70a10e933dd3538e4ce5ef1c61e9bb08
BLAKE2b-256 7581416ee6dc42c474e54a56c3919f4c8ff8bc8b6eb107076fe2b1cdd339c8d1

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b755dc4e500a88b4b0d8b1fb6674990cff2ec40c056795e48c340944f34611aa
MD5 8092e13293c789d3342f8d6cbdc43993
BLAKE2b-256 ca9934d04b7a6eb99ae89680e7ddd6fa1ec62d002a492b0d9b2072e3190b50e3

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e034ee4fcc80017e195b83d67313a5103135cd53f1f65e7fca540301c8400682
MD5 8f32513c749c331451c5f48dc3e82ed9
BLAKE2b-256 10473eedbe5c7af3a1d6daecc9a11f40d2be4302bca02b59877ee3e224f14824

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e77237c3a5e61388780780605942e591b3c037b2e7dfb192efce7171fd1d35f4
MD5 4050f153989a8b06f2756b0a7167b86a
BLAKE2b-256 715afb9b2300774795cb09004d3caff760de85fad56fd527cd58dd69bbae3763

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3a5c856fb3fa0ba956bc425c5a06aace308fec46495c7ebcd5c7fe1f36bf5740
MD5 139ab6fe40ae55d8bd1b0a0dc1ee2a2d
BLAKE2b-256 89a174bc80c04b481b42c36b9dd7ded494ce9988865b2e043df24dee71dc22eb

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: zmesh-1.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 184.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.6

File hashes

Hashes for zmesh-1.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d223cc1896a2461dbf92cbbd6ceb484e069d4207707c45624cfe5b7aa6bfd428
MD5 8f1d6f9c0d5bf298689a082ddfd21051
BLAKE2b-256 4a3fe02dc80ba982c9c7f7c4d0660d9bb8bbd95e26ab72991b7da117fcb30502

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb063f97438e81e91ba76d646a0acb3fbdde107f89292f647146b03203f8517b
MD5 1e46da2032c10d3544e6afee97ae0bd9
BLAKE2b-256 a8d5efb65d06f0e9d80b34d306129c85c0a1c9352077f8e34fcd60adc8ed7cbb

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f11632b851996fac9e165b1a4a5cdf7e581245989a31749a8d95bea77060aa06
MD5 caa653ed1589e3b4f4fadd91b8ebd7a8
BLAKE2b-256 018567a0056978f127c00194aa1bd34addf01d7d585d317b41b3ff9b4ec081c8

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ec8ad3995681ccaa134d5ec2e4842555de7aba4f8fcfa6924c9c60cd4bfe83d6
MD5 926421d668047116321d6170e4f6c680
BLAKE2b-256 8b523794b17b675860a74aaa62b6532071e7313a7e98fbfe796ff371b7321dba

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3dc6c903938ac66b28f4bd8c73f826df98b053639dd96d3ead82e0c326dfa2b9
MD5 53feb8a449cb0871b6096b2a69feaa8e
BLAKE2b-256 89a3d09251204f58b79b9346b2da9982ff24b6ac4ab3295dc8207a757a98a057

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: zmesh-1.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 184.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.6

File hashes

Hashes for zmesh-1.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fea156a6814e676a380b43debe1ac8d58af8cb16232f7750baf8930c7b9d5f43
MD5 404dd7f253efc672ef23142ca54a1cb3
BLAKE2b-256 47c981e34c5fcc0f388170a5ee307478d81488ae748790d9cdc7c4bb736aeac4

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5025adea724b6d51a3997e92dfe47bf2675a2d59e2b3151c95a7e2f2ad91fabc
MD5 4153b97235bfd14a01619f4901a0c5ad
BLAKE2b-256 33bacda532f41477f16fb1e799e49e924ab97c9e46b241b518d7389c85f7b6fb

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 980e56dc00c30237293c9b0aded6822ebb238a5beac830d0d0697445357d5813
MD5 240793292dcd5cbcef884262fea534e8
BLAKE2b-256 2c4893629de5160a02ef5fb1b283ea4e88f17e56b65fa8f95830e436116084af

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 02cb20206b226c6494fd720b0557e8a048e67e6ea9f13ad1106e56d2ddec7d04
MD5 b99c36570f8fc1d48a9ae147df10448e
BLAKE2b-256 69c526bf97c2e8eb8e0c327ed29851e1a0f82b11ee4f3b2a722ab4180ec641fc

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 87c1009cb573ea0be05fa029737faa65fbba56c29e15e319c48dbca1a39017e5
MD5 62cb42dfb102e203d544513c24d01b7a
BLAKE2b-256 f34e816d49101835c683681be78057b96b3cf7920202bec10eada5b091df6a46

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: zmesh-1.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 186.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.6

File hashes

Hashes for zmesh-1.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2b17720ba52edf8f20abd8c638d2c6ddbb766fe18487668c29fe19b66069017b
MD5 b10c75d214d30af6a2756aa7e237b696
BLAKE2b-256 8c76d6b14695a7c86b8685a3f6a9cada79cb98928e61a3c2c1ea0e4733262016

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee5abd9ea7bab5535fdecbfdc213e7642374f41e754bbda8b24ee30ce60e8f05
MD5 fe314126513d612eee5b7b8843b2100a
BLAKE2b-256 aa0c22cfe4ca5f6072faf89dea8a0719f906a0cd9c92091346bb93780ed39694

See more details on using hashes here.

File details

Details for the file zmesh-1.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for zmesh-1.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3e4214eb941ba326fae0959ed9f39d058947a0cc20ff7ed75fe04a99210eec51
MD5 f8be73242a29a0b779b87bc619e23ade
BLAKE2b-256 aa31d60272bc6e00ad1779a24bf360ce424459b89fcfa4f98a1534c11a0cd9aa

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page