Skip to main content

No project description provided

Project description

MEGNetSparse

Installation

pip install MEGNetSparse
  1. You must first install the torch and torch-geometric
  2. The notebook provided in the examples will only work with pymatgen=2023.1.30, so you may need to reinstall it.

Usage

The library provides the ability to use a function convert_to_sparse_representation and a class MEGNetTrainer

convert_to_sparse_representation(
    structure,
    unit_cell,
    supercell_size,
    skip_eos=False,
    skip_was=False,
    skip_state=False,
    copy_unit_cell_properties=False
)
  • structure : Structure - the structre to convert to sparse representation
  • unit_cell : Structure - unit cell of base material
  • supercell_size : List[int] - list with three integers to copy a cell along three coordinates
  • skip_eos : bool - if True will not add eos to properties and will speed up computations
  • skip_was: bool - if True will not add was to properties
  • skip_state : bool - if True will not add global state
  • copy_unit_cell_properties: bool - if True will also copy unit cell properties in case of name collisions structure properties will be overwritten

return : sparse representation of structure

MEGNetTrainer(
    config,
    device,
)
  • config : dict - template config can be found in examples notebook
  • device : str - device in torch format
MEGNetTrainer.prepare_data(
    self,
    train_data,
    train_targets,
    test_data,
    test_targets,
    target_name,
):
  • train_data : List[Structure] - list of structures in sparse or dense representation
  • train_targets : List[float32] - list of targets
  • test_data : List[Structure] - list of structures in sparse or dense representation
  • test_targets : List[float32] - list of targets
  • target_name : str - target name
MEGNetTrainer.train_one_epoch(self)

return : mae on train data, mse on train data

MEGNetTrainer.evaluate_on_test(
    self, 
    return_predictions=False
)

return : if return_predictions=True, mae on test data, predictions else only mae on test data

MEGNetTrainer.predict_structures(
    self, 
    structures_list
)
  • structures_list : List[Structure] - list of structures in sparse or dense representation

return : predictions for structures

MEGNetTrainer.save(self, path)
  • path : str - where to store model data
MEGNetTrainer.load(self, path)
  • path : str - where to load model data from

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MEGNetSparse-0.0.3.tar.gz (88.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

MEGNetSparse-0.0.3-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file MEGNetSparse-0.0.3.tar.gz.

File metadata

  • Download URL: MEGNetSparse-0.0.3.tar.gz
  • Upload date:
  • Size: 88.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for MEGNetSparse-0.0.3.tar.gz
Algorithm Hash digest
SHA256 b6c450a214fd1ed1affe74d534507bccb57aa0fbf56d531b0ae6778ad40453a8
MD5 d272c1c5b0ba65e7ce75840afbba05a1
BLAKE2b-256 ab1c6c60f7ba18748f511d91fd6654fe539f9d5bdd8ddbb504f1121f171ed2c4

See more details on using hashes here.

File details

Details for the file MEGNetSparse-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: MEGNetSparse-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for MEGNetSparse-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 3ec7ff67cbe1f3aa397645a646693b5a2a9b79d6d05adf21495c09386f125cd6
MD5 840325678cc6b51fa36f319c35a5e4fb
BLAKE2b-256 a9b7674a19cc93627bd7ad8c9900d455463454c1496f31a3d77169df19d3dbc4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page