No project description provided
Project description
MEGNetSparse
Installation
pip install MEGNetSparse
- You must first install the torch and torch-geometric
- The notebook provided in the examples will only work with pymatgen=2023.1.30, so you may need to reinstall it.
Usage
The library provides the ability to use a function convert_to_sparse_representation and a class MEGNetTrainer
convert_to_sparse_representation(
structure,
unit_cell,
supercell_size,
skip_eos=False,
skip_was=False,
skip_state=False,
copy_unit_cell_properties=False
)
- structure : Structure - the structre to convert to sparse representation
- unit_cell : Structure - unit cell of base material
- supercell_size : List[int] - list with three integers to copy a cell along three coordinates
- skip_eos : bool - if True will not add eos to properties and will speed up computations
- skip_was: bool - if True will not add was to properties
- skip_state : bool - if True will not add global state
- copy_unit_cell_properties: bool - if True will also copy unit cell properties in case of name collisions structure properties will be overwritten
return : sparse representation of structure
MEGNetTrainer(
config,
device,
)
- config : dict - template config can be found in examples notebook
- device : str - device in torch format
MEGNetTrainer.prepare_data(
self,
train_data,
train_targets,
test_data,
test_targets,
target_name,
):
- train_data : List[Structure] - list of structures in sparse or dense representation
- train_targets : List[float32] - list of targets
- test_data : List[Structure] - list of structures in sparse or dense representation
- test_targets : List[float32] - list of targets
- target_name : str - target name
MEGNetTrainer.train_one_epoch(self)
return : mae on train data, mse on train data
MEGNetTrainer.evaluate_on_test(
self,
return_predictions=False
)
return : if return_predictions=True, mae on test data, predictions else only mae on test data
MEGNetTrainer.predict_structures(
self,
structures_list
)
- structures_list : List[Structure] - list of structures in sparse or dense representation
return : predictions for structures
MEGNetTrainer.save(self, path)
- path : str - where to store model data
MEGNetTrainer.load(self, path)
- path : str - where to load model data from
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file MEGNetSparse-0.0.3.tar.gz.
File metadata
- Download URL: MEGNetSparse-0.0.3.tar.gz
- Upload date:
- Size: 88.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
b6c450a214fd1ed1affe74d534507bccb57aa0fbf56d531b0ae6778ad40453a8
|
|
| MD5 |
d272c1c5b0ba65e7ce75840afbba05a1
|
|
| BLAKE2b-256 |
ab1c6c60f7ba18748f511d91fd6654fe539f9d5bdd8ddbb504f1121f171ed2c4
|
File details
Details for the file MEGNetSparse-0.0.3-py3-none-any.whl.
File metadata
- Download URL: MEGNetSparse-0.0.3-py3-none-any.whl
- Upload date:
- Size: 12.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
3ec7ff67cbe1f3aa397645a646693b5a2a9b79d6d05adf21495c09386f125cd6
|
|
| MD5 |
840325678cc6b51fa36f319c35a5e4fb
|
|
| BLAKE2b-256 |
a9b7674a19cc93627bd7ad8c9900d455463454c1496f31a3d77169df19d3dbc4
|