Skip to main content

No project description provided

Project description

MEGNetSparse

Installation

pip install MEGNetSparse
  1. You must first install the torch and torch-geometric
  2. The notebook provided in the examples will only work with pymatgen=2023.1.30, so you may need to reinstall it.

Usage

The library provides the ability to use a function convert_to_sparse_representation and a class MEGNetTrainer

convert_to_sparse_representation(
    structure,
    unit_cell,
    supercell_size,
    skip_eos=False,
    skip_was=False,
    skip_state=False,
    copy_unit_cell_properties=False
)
  • structure : Structure - the structre to convert to sparse representation
  • unit_cell : Structure - unit cell of base material
  • supercell_size : List[int] - list with three integers to copy a cell along three coordinates
  • skip_eos : bool - if True will not add eos to properties and will speed up computations
  • skip_was: bool - if True will not add was to properties
  • skip_state : bool - if True will not add global state
  • copy_unit_cell_properties: bool - if True will also copy unit cell properties in case of name collisions structure properties will be overwritten

return : sparse representation of structure

MEGNetTrainer(
    config,
    device,
)
  • config : dict - template config can be found in examples notebook
  • device : str - device in torch format
MEGNetTrainer.prepare_data(
    self,
    train_data,
    train_targets,
    test_data,
    test_targets,
    target_name,
):
  • train_data : List[Structure] - list of structures in sparse or dense representation
  • train_targets : List[float32] - list of targets
  • test_data : List[Structure] - list of structures in sparse or dense representation
  • test_targets : List[float32] - list of targets
  • target_name : str - target name
MEGNetTrainer.train_one_epoch(self)

return : mae on train data, mse on train data

MEGNetTrainer.evaluate_on_test(
    self, 
    return_predictions=False
)

return : if return_predictions=True, mae on test data, predictions else only mae on test data

MEGNetTrainer.predict_structures(
    self, 
    structures_list
)
  • structures_list : List[Structure] - list of structures in sparse or dense representation

return : predictions for structures

MEGNetTrainer.save(self, path)
  • path : str - where to store model data
MEGNetTrainer.load(self, path)
  • path : str - where to load model data from

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MEGNetSparse-0.0.4.tar.gz (88.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

MEGNetSparse-0.0.4-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file MEGNetSparse-0.0.4.tar.gz.

File metadata

  • Download URL: MEGNetSparse-0.0.4.tar.gz
  • Upload date:
  • Size: 88.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for MEGNetSparse-0.0.4.tar.gz
Algorithm Hash digest
SHA256 c1e3845383dd0c1bf8b57f18a933616a9adea3de5a40a4ff164386f8cbf3bed7
MD5 6a3b0d837f7358dcfd6b5ee143b4846b
BLAKE2b-256 8a533cf164d0e723a58b7cfa9d97b771ff4d7fbcd4095ffbe6e00dd04ac1b7d6

See more details on using hashes here.

File details

Details for the file MEGNetSparse-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: MEGNetSparse-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for MEGNetSparse-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 f024e9d5bdbe4d70602206c2c3ce6c68c5785718c123a1e5d32e0e4f4f24ebdb
MD5 efadd8a869d4cf2761d17c1404b2c15d
BLAKE2b-256 db7c89aee5e074e68762f0585c3b0c86453841210d91e979a23c2acc503a45e7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page