Skip to main content

No project description provided

Project description

MEGNetSparse

Installation

pip install MEGNetSparse
  1. You must first install the torch and torch-geometric
  2. The notebook provided in the examples will only work with pymatgen=2023.1.30, so you may need to reinstall it.

Usage

The library provides the ability to use a function convert_to_sparse_representation and a class MEGNetTrainer

convert_to_sparse_representation(
    structure,
    unit_cell,
    supercell_size,
    skip_eos=False,
    skip_was=False,
    skip_state=False,
    copy_unit_cell_properties=False
)
  • structure : Structure - the structre to convert to sparse representation
  • unit_cell : Structure - unit cell of base material
  • supercell_size : List[int] - list with three integers to copy a cell along three coordinates
  • skip_eos : bool - if True will not add eos to properties and will speed up computations
  • skip_was: bool - if True will not add was to properties
  • skip_state : bool - if True will not add global state
  • copy_unit_cell_properties: bool - if True will also copy unit cell properties in case of name collisions structure properties will be overwritten

return : sparse representation of structure

MEGNetTrainer(
    config,
    device,
)
  • config : dict - template config can be found in examples notebook
  • device : str - device in torch format
MEGNetTrainer.prepare_data(
    self,
    train_data,
    train_targets,
    test_data,
    test_targets,
    target_name,
):
  • train_data : List[Structure] - list of structures in sparse or dense representation
  • train_targets : List[float32] - list of targets
  • test_data : List[Structure] - list of structures in sparse or dense representation
  • test_targets : List[float32] - list of targets
  • target_name : str - target name
MEGNetTrainer.train_one_epoch(self)

return : mae on train data, mse on train data

MEGNetTrainer.evaluate_on_test(
    self, 
    return_predictions=False
)

return : if return_predictions=True, mae on test data, predictions else only mae on test data

MEGNetTrainer.predict_structures(
    self, 
    structures_list
)
  • structures_list : List[Structure] - list of structures in sparse or dense representation

return : predictions for structures

MEGNetTrainer.save(self, path)
  • path : str - where to store model data
MEGNetTrainer.load(self, path)
  • path : str - where to load model data from

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MEGNetSparse-0.0.6.tar.gz (88.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

MEGNetSparse-0.0.6-py3-none-any.whl (12.8 kB view details)

Uploaded Python 3

File details

Details for the file MEGNetSparse-0.0.6.tar.gz.

File metadata

  • Download URL: MEGNetSparse-0.0.6.tar.gz
  • Upload date:
  • Size: 88.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for MEGNetSparse-0.0.6.tar.gz
Algorithm Hash digest
SHA256 efb35462d2ae4e2c6176e393065fd2ce0640b27950648503682b5969c9e89498
MD5 4369784262b3cf61bf1971d1296f5047
BLAKE2b-256 74266b6468e651008b03de8a60251714797527ac50005ea1bb85ea237d3c69dc

See more details on using hashes here.

File details

Details for the file MEGNetSparse-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: MEGNetSparse-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 12.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for MEGNetSparse-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 9e01165dd21d88160a8f96a4eb9248737623cebb56379157899ab4885b32f555
MD5 2e8c39728553bb0277e50e33eab3ccdc
BLAKE2b-256 dcaf32fff60ec8b02bff76bd04169708bf8910b3c2851d00355731b64a5d4537

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page