Skip to main content

No project description provided

Project description

MEGNetSparse

Installation

pip install MEGNetSparse
  1. You must first install the torch and torch-geometric
  2. The notebook provided in the examples will only work with pymatgen=2023.1.30, so you may need to reinstall it.

Usage

The library provides the ability to use a function convert_to_sparse_representation and a class MEGNetTrainer

convert_to_sparse_representation(
    structure,
    unit_cell,
    supercell_size,
    skip_eos=False,
    skip_was=False,
    skip_state=False,
    copy_unit_cell_properties=False
)
  • structure : Structure - the structre to convert to sparse representation
  • unit_cell : Structure - unit cell of base material
  • supercell_size : List[int] - list with three integers to copy a cell along three coordinates
  • skip_eos : bool - if True will not add eos to properties and will speed up computations
  • skip_was: bool - if True will not add was to properties
  • skip_state : bool - if True will not add global state
  • copy_unit_cell_properties: bool - if True will also copy unit cell properties in case of name collisions structure properties will be overwritten

return : sparse representation of structure

MEGNetTrainer(
    config,
    device,
)
  • config : dict - template config can be found in examples notebook
  • device : str - device in torch format
MEGNetTrainer.prepare_data(
    self,
    train_data,
    train_targets,
    test_data,
    test_targets,
    target_name,
):
  • train_data : List[Structure] - list of structures in sparse or dense representation
  • train_targets : List[float32] - list of targets
  • test_data : List[Structure] - list of structures in sparse or dense representation
  • test_targets : List[float32] - list of targets
  • target_name : str - target name
MEGNetTrainer.train_one_epoch(self)

return : mae on train data, mse on train data

MEGNetTrainer.evaluate_on_test(
    self, 
    return_predictions=False
)

return : if return_predictions=True, mae on test data, predictions else only mae on test data

MEGNetTrainer.predict_structures(
    self, 
    structures_list
)
  • structures_list : List[Structure] - list of structures in sparse or dense representation

return : predictions for structures

MEGNetTrainer.save(self, path)
  • path : str - where to store model data
MEGNetTrainer.load(self, path)
  • path : str - where to load model data from

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

megnetsparse-0.0.8.tar.gz (87.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

megnetsparse-0.0.8-py3-none-any.whl (12.6 kB view details)

Uploaded Python 3

File details

Details for the file megnetsparse-0.0.8.tar.gz.

File metadata

  • Download URL: megnetsparse-0.0.8.tar.gz
  • Upload date:
  • Size: 87.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for megnetsparse-0.0.8.tar.gz
Algorithm Hash digest
SHA256 9635d22642c314e1f7ca165597a87755faeac079821f38a0acb153bfdd01c846
MD5 ba7c9c5977a6ae0589a3c74d3239dee6
BLAKE2b-256 febfd12959cbfef5132a6a7272d40f76d55538d1ba69623993b1a347e2d9fc5f

See more details on using hashes here.

File details

Details for the file megnetsparse-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: megnetsparse-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for megnetsparse-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 54b89bc90fd6ea663484df0a8f1da9e5fc5dc6b7ec58ac41f0087dab4b0d5d63
MD5 cd0b4c24fd38be0962bdfbc811a26aaf
BLAKE2b-256 af5eb04bc87d16de16a98aedafa20db5f9ce0f7cfd5d3579182b8d8e62da3d73

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page