Skip to main content

Library to easily interface with LLM API providers

Project description

๐Ÿš… LiteLLM

Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, VertexAI, TogetherAI, Azure, OpenAI, etc.]

OpenAI Proxy Server | Enterprise Tier

PyPI Version CircleCI Y Combinator W23 Whatsapp Discord

LiteLLM manages:

  • Translate inputs to provider's completion, embedding, and image_generation endpoints
  • Consistent output, text responses will always be available at ['choices'][0]['message']['content']
  • Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router
  • Set Budgets & Rate limits per project, api key, model OpenAI Proxy Server

Jump to OpenAI Proxy Docs
Jump to Supported LLM Providers

Support for more providers. Missing a provider or LLM Platform, raise a feature request.

Usage (Docs)

[!IMPORTANT] LiteLLM v1.0.0 now requires openai>=1.0.0. Migration guide here

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables 
os.environ["OPENAI_API_KEY"] = "your-openai-key" 
os.environ["COHERE_API_KEY"] = "your-cohere-key" 

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)

# cohere call
response = completion(model="command-nightly", messages=messages)
print(response)

Async (Docs)

from litellm import acompletion
import asyncio

async def test_get_response():
    user_message = "Hello, how are you?"
    messages = [{"content": user_message, "role": "user"}]
    response = await acompletion(model="gpt-3.5-turbo", messages=messages)
    return response

response = asyncio.run(test_get_response())
print(response)

Streaming (Docs)

liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response.
Streaming is supported for all models (Bedrock, Huggingface, TogetherAI, Azure, OpenAI, etc.)

from litellm import completion
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

# claude 2
response = completion('claude-2', messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

Logging Observability (Docs)

LiteLLM exposes pre defined callbacks to send data to Langfuse, DynamoDB, s3 Buckets, LLMonitor, Helicone, Promptlayer, Traceloop, Athina, Slack

from litellm import completion

## set env variables for logging tools
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["LLMONITOR_APP_ID"] = "your-llmonitor-app-id"
os.environ["ATHINA_API_KEY"] = "your-athina-api-key"

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["langfuse", "llmonitor", "athina"] # log input/output to langfuse, llmonitor, supabase, athina etc

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi ๐Ÿ‘‹ - i'm openai"}])

OpenAI Proxy - (Docs)

Track spend across multiple projects/people

The proxy provides:

  1. Hooks for auth
  2. Hooks for logging
  3. Cost tracking
  4. Rate Limiting

๐Ÿ“– Proxy Endpoints - Swagger Docs

Quick Start Proxy - CLI

pip install 'litellm[proxy]'

Step 1: Start litellm proxy

$ litellm --model huggingface/bigcode/starcoder

#INFO: Proxy running on http://0.0.0.0:8000

Step 2: Make ChatCompletions Request to Proxy

import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:8000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])

print(response)

Proxy Key Management (Docs)

UI on /ui on your proxy server ui_3

Track Spend, Set budgets and create virtual keys for the proxy POST /key/generate

Request

curl 'http://0.0.0.0:8000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m","metadata": {"user": "ishaan@berri.ai", "team": "core-infra"}}'

Expected Response

{
    "key": "sk-kdEXbIqZRwEeEiHwdg7sFA", # Bearer token
    "expires": "2023-11-19T01:38:25.838000+00:00" # datetime object
}

Supported Providers (Docs)

Provider Completion Streaming Async Completion Async Streaming Async Embedding Async Image Generation
openai โœ… โœ… โœ… โœ… โœ… โœ…
azure โœ… โœ… โœ… โœ… โœ… โœ…
aws - sagemaker โœ… โœ… โœ… โœ… โœ…
aws - bedrock โœ… โœ… โœ… โœ… โœ…
google - vertex_ai [Gemini] โœ… โœ… โœ… โœ…
google - palm โœ… โœ… โœ… โœ…
google AI Studio - gemini โœ… โœ…
mistral ai api โœ… โœ… โœ… โœ… โœ…
cloudflare AI Workers โœ… โœ… โœ… โœ…
cohere โœ… โœ… โœ… โœ… โœ…
anthropic โœ… โœ… โœ… โœ…
huggingface โœ… โœ… โœ… โœ… โœ…
replicate โœ… โœ… โœ… โœ…
together_ai โœ… โœ… โœ… โœ…
openrouter โœ… โœ… โœ… โœ…
ai21 โœ… โœ… โœ… โœ…
baseten โœ… โœ… โœ… โœ…
vllm โœ… โœ… โœ… โœ…
nlp_cloud โœ… โœ… โœ… โœ…
aleph alpha โœ… โœ… โœ… โœ…
petals โœ… โœ… โœ… โœ…
ollama โœ… โœ… โœ… โœ…
deepinfra โœ… โœ… โœ… โœ…
perplexity-ai โœ… โœ… โœ… โœ…
Groq AI โœ… โœ… โœ… โœ…
anyscale โœ… โœ… โœ… โœ…
voyage ai โœ…
xinference [Xorbits Inference] โœ…

Read the Docs

Contributing

To contribute: Clone the repo locally -> Make a change -> Submit a PR with the change.

Here's how to modify the repo locally: Step 1: Clone the repo

git clone https://github.com/BerriAI/litellm.git

Step 2: Navigate into the project, and install dependencies:

cd litellm
poetry install

Step 3: Test your change:

cd litellm/tests # pwd: Documents/litellm/litellm/tests
poetry run flake8
poetry run pytest .

Step 4: Submit a PR with your changes! ๐Ÿš€

  • push your fork to your GitHub repo
  • submit a PR from there

Support / talk with founders

Why did we build this

  • Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI and Cohere.

Contributors

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

litellm-1.27.2.dev1.tar.gz (3.5 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

litellm-1.27.2.dev1-py3-none-any.whl (3.6 MB view details)

Uploaded Python 3

File details

Details for the file litellm-1.27.2.dev1.tar.gz.

File metadata

  • Download URL: litellm-1.27.2.dev1.tar.gz
  • Upload date:
  • Size: 3.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.11.4 Darwin/22.5.0

File hashes

Hashes for litellm-1.27.2.dev1.tar.gz
Algorithm Hash digest
SHA256 f340e734e7545d5bc94a2378075809e7287b392acfdc6da2222a4f524d7bffd6
MD5 44a37b19e1f4fd57e8db73864ec8249d
BLAKE2b-256 0c9ab79504ceaaf1f546bbc2b9cf6726490622f7850d1b38b2d3a409a68b58dd

See more details on using hashes here.

File details

Details for the file litellm-1.27.2.dev1-py3-none-any.whl.

File metadata

  • Download URL: litellm-1.27.2.dev1-py3-none-any.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.11.4 Darwin/22.5.0

File hashes

Hashes for litellm-1.27.2.dev1-py3-none-any.whl
Algorithm Hash digest
SHA256 42ee8efb64f5a486fde7dc51e5c7f98844972d3ff757cd92412e4a267ad77b36
MD5 956c736f716752c0ebc2bc6f16c5e4fb
BLAKE2b-256 fea3927fafb12d013297410f5533f0c0f6db083191158680c2241793ab65316f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page