Skip to main content

Library to easily interface with LLM API providers

Project description

๐Ÿš… LiteLLM

Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, Cohere, TogetherAI, Azure, OpenAI, etc.]

OpenAI-Compatible Server

PyPI Version CircleCI Y Combinator W23 Whatsapp Discord

LiteLLM manages

  • Translating inputs to the provider's completion and embedding endpoints
  • Guarantees consistent output, text responses will always be available at ['choices'][0]['message']['content']
  • Exception mapping - common exceptions across providers are mapped to the OpenAI exception types.
  • Load-balance across multiple deployments (e.g. Azure/OpenAI) - Router 1k+ requests/second

Usage (Docs)

[!IMPORTANT] LiteLLM v1.0.0 now requires openai>=1.0.0. Migration guide here

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables 
os.environ["OPENAI_API_KEY"] = "your-openai-key" 
os.environ["COHERE_API_KEY"] = "your-cohere-key" 

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)

# cohere call
response = completion(model="command-nightly", messages=messages)
print(response)

Streaming (Docs)

liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response.
Streaming is supported for all models (Bedrock, Huggingface, TogetherAI, Azure, OpenAI, etc.)

from litellm import completion
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

# claude 2
response = completion('claude-2', messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

Router - load balancing(Docs)

LiteLLM allows you to load balance between multiple deployments (Azure, OpenAI). It picks the deployment which is below rate-limit and has the least amount of tokens used.

from litellm import Router

model_list = [{ # list of model deployments 
    "model_name": "gpt-3.5-turbo", # model alias 
    "litellm_params": { # params for litellm completion/embedding call 
        "model": "azure/chatgpt-v-2", # actual model name
        "api_key": os.getenv("AZURE_API_KEY"),
        "api_version": os.getenv("AZURE_API_VERSION"),
        "api_base": os.getenv("AZURE_API_BASE")
    }
}, {
    "model_name": "gpt-3.5-turbo", 
    "litellm_params": { # params for litellm completion/embedding call 
        "model": "azure/chatgpt-functioncalling", 
        "api_key": os.getenv("AZURE_API_KEY"),
        "api_version": os.getenv("AZURE_API_VERSION"),
        "api_base": os.getenv("AZURE_API_BASE")
    }
}, {
    "model_name": "gpt-3.5-turbo", 
    "litellm_params": { # params for litellm completion/embedding call 
        "model": "gpt-3.5-turbo", 
        "api_key": os.getenv("OPENAI_API_KEY"),
    }
}]

router = Router(model_list=model_list)

# openai.ChatCompletion.create replacement
response = router.completion(model="gpt-3.5-turbo", 
                messages=[{"role": "user", "content": "Hey, how's it going?"}])

print(response)

OpenAI Proxy - (Docs)

LiteLLM Proxy manages:

  • Calling 100+ LLMs Huggingface/Bedrock/TogetherAI/etc. in the OpenAI ChatCompletions & Completions format
  • Load balancing - between Multiple Models + Deployments of the same model LiteLLM proxy can handle 1k+ requests/second during load tests
  • Authentication & Spend Tracking Virtual Keys

Step 1: Start litellm proxy

$ litellm --model huggingface/bigcode/starcoder

#INFO: Proxy running on http://0.0.0.0:8000

Step 2: Replace openai base

import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:8000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])

print(response)

Logging Observability (Docs)

LiteLLM exposes pre defined callbacks to send data to Langfuse, LLMonitor, Helicone, Promptlayer, Traceloop, Slack

from litellm import completion

## set env variables for logging tools
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["LLMONITOR_APP_ID"] = "your-llmonitor-app-id"

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["langfuse", "llmonitor"] # log input/output to langfuse, llmonitor, supabase

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi ๐Ÿ‘‹ - i'm openai"}])

Supported Provider (Docs)

Provider Completion Streaming Async Completion Async Streaming
openai โœ… โœ… โœ… โœ…
azure โœ… โœ… โœ… โœ…
aws - sagemaker โœ… โœ… โœ… โœ…
aws - bedrock โœ… โœ… โœ… โœ…
cohere โœ… โœ… โœ… โœ…
anthropic โœ… โœ… โœ… โœ…
huggingface โœ… โœ… โœ… โœ…
replicate โœ… โœ… โœ… โœ…
together_ai โœ… โœ… โœ… โœ…
openrouter โœ… โœ… โœ… โœ…
google - vertex_ai โœ… โœ… โœ… โœ…
google - palm โœ… โœ… โœ… โœ…
ai21 โœ… โœ… โœ… โœ…
baseten โœ… โœ… โœ… โœ…
vllm โœ… โœ… โœ… โœ…
nlp_cloud โœ… โœ… โœ… โœ…
aleph alpha โœ… โœ… โœ… โœ…
petals โœ… โœ… โœ… โœ…
ollama โœ… โœ… โœ… โœ…
deepinfra โœ… โœ… โœ… โœ…
perplexity-ai โœ… โœ… โœ… โœ…
anyscale โœ… โœ… โœ… โœ…

Read the Docs

Contributing

To contribute: Clone the repo locally -> Make a change -> Submit a PR with the change.

Here's how to modify the repo locally: Step 1: Clone the repo

git clone https://github.com/BerriAI/litellm.git

Step 2: Navigate into the project, and install dependencies:

cd litellm
poetry install

Step 3: Test your change:

cd litellm/tests # pwd: Documents/litellm/litellm/tests
pytest .

Step 4: Submit a PR with your changes! ๐Ÿš€

  • push your fork to your GitHub repo
  • submit a PR from there

Support / talk with founders

Why did we build this

  • Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI and Cohere.

Contributors

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

litellm-1.9.dev0.tar.gz (1.4 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

litellm-1.9.dev0-py3-none-any.whl (1.4 MB view details)

Uploaded Python 3

File details

Details for the file litellm-1.9.dev0.tar.gz.

File metadata

  • Download URL: litellm-1.9.dev0.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.0

File hashes

Hashes for litellm-1.9.dev0.tar.gz
Algorithm Hash digest
SHA256 7ee17c28aba41023c727cd4165c16fd892e1a483a7b080262010cd5c5e65e037
MD5 da0fc1ea691867261ca6701604bca597
BLAKE2b-256 ad6c162b83e9cf68f5a94c30153e835414c3ee11c8602ffaacc9a032851dfa26

See more details on using hashes here.

File details

Details for the file litellm-1.9.dev0-py3-none-any.whl.

File metadata

  • Download URL: litellm-1.9.dev0-py3-none-any.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.0

File hashes

Hashes for litellm-1.9.dev0-py3-none-any.whl
Algorithm Hash digest
SHA256 8fee9ea108f77d9d1a9bc5a6656b09dbe98647b50546240042f487eaed7e9b40
MD5 7306d5546be12bce58e640ed9055d3f0
BLAKE2b-256 222948ca636eccb49d9375584df6b648b9c3642cfda963071335a10546b5e9ea

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page