Skip to main content

A Python package to facilitate the development and simulation of biological networks in NEURON.

Project description

# NetPyNE (python package)
## Description
A Python package to facilitate the development and simulation of biological networks in NEURON ([NetPyNE Documentation](http://neurosimlab.org/netpyne/))

NEURON/Python-based modularized framework for network simulations with MPI. Using this modularized structure, users can define different models (including cell types, populations, connectivities, etc.) just by modifying a single parameters file, and easily simulate then in NEURON. Additionally, the framework allows to store a single data file with the following:

1. model specifications (conn rules etc)
2. network instantiation (list of all cells, connections, etc)
3. simulation parameters/configuration (duration, dt, etc)
4. simulation output (spikes, voltage traces etc)

The data file is available in Pickle, JSON and Matlab formats.

Three example model parameters are provided:

1. **HHTut.py** - simple tutorial model with a single Hodgkin-Huxley population and random connectivity
2. **HybridTut.py** - simple tutorial model with a Hodgkin-Huxley and an Izhikevich populations, with random connectivity
3. **M1.py** - mouse M1 model with 14 populations and cortical depth-dependent connectivity.

Additional details of the modelling framework can be found here:

* [NetPyNE Documentation](http://neurosimlab.org/netpyne/)
* [SFN'15 poster](http://neurosimlab.org/salvadord/sfn15-sal-final.pdf)
* [slides](https://drive.google.com/file/d/0B8v-knmZRjhtVl9BOFY2bzlWSWs/view?usp=sharing)


## Setup and execution

Requires NEURON with Python and MPI support.

1. Install package via `pip install netpyne`.

2. Create a model file (eg. model.py) where you import the netpyne package and set the parameters (you can use some of the parameter files incldued in the `examples` folder, eg. `HHTut.py`):

```
import HHTut
from netpyne import init
init.createAndSimulate(
simConfig = HHTut.simConfig,
netParams = HHTut.netParams)
```

3. Type `nrnivmodl mod`. This should create a directory called either i686 or x86_64, depending on your computer's architecture.

4. To run type `python model.py` (or `mpiexec -np [num_proc] nrniv -python -mpi model.py` for parallel simulation).

## Overview of files:

* **examples/**: Folder with examples.

* **doc/**: Folder with documentation source files.

* **netpyne/**: Folder with netpyne package files.

* **netpyne/init.py**: Main executable; calls functions from other modules. Sets what parameter file to use.

* **netpyne/framework.py**: Contains all the model shared variables and modules. It is imported as "s" from all other file, so that any variable or module can be referenced from any file using s.varName

* **netpyne/sim.py**: Simulation control functions (eg. runSim).

* **netpyne/network.py**: Network related functions (eg. createCells)

* **netpyne/cell.py**: contains cell and population classes to create cells based on the parameters.

* **netpyne/analysis.py**: functions to visualize and analyse data

* **netpyne/default.py**: default network and simulation parameters

* **netpyne/utils.py**: utility python methods (eg. to import cell parameters)



For further information please contact: salvadordura@gmail.com

Project details


Release history Release notifications | RSS feed

This version

0.3.6

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

netpyne-0.3.6.tar.gz (207.3 kB view details)

Uploaded Source

Built Distribution

netpyne-0.3.6-py2-none-any.whl (32.6 kB view details)

Uploaded Python 2

File details

Details for the file netpyne-0.3.6.tar.gz.

File metadata

  • Download URL: netpyne-0.3.6.tar.gz
  • Upload date:
  • Size: 207.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for netpyne-0.3.6.tar.gz
Algorithm Hash digest
SHA256 c69eea1f08cf4e07a5672c63ee3a4e896cef0c8e4018c4a64b1e3e221c08d7b7
MD5 b1276b2a5d0d2913798778de91f42c38
BLAKE2b-256 ebc38e1c755f399162fe314cfd74bb60347a971dcdfdde259001425001ccc0cf

See more details on using hashes here.

File details

Details for the file netpyne-0.3.6-py2-none-any.whl.

File metadata

File hashes

Hashes for netpyne-0.3.6-py2-none-any.whl
Algorithm Hash digest
SHA256 24d313e410fdc28ad33a0f91665240dd42b63f57678d2cc2defd4eadc13d687c
MD5 4cc120b4037575b1a0856ec0e8e93a24
BLAKE2b-256 0760d56f513bb3f57d5eb7e591a1f020e462968676ab0b5e93e6ab31035ae3f3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page