Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Francesc Alted

Contact:
faltet@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi.org/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most *nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first. The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installing the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

python setup.py build install

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential, …).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate("a * b - 4.1 * a > 2.5 * b")   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.10.2.tar.gz (106.8 kB view details)

Uploaded Source

Built Distributions

numexpr-2.10.2-cp313-cp313-win_amd64.whl (145.1 kB view details)

Uploaded CPython 3.13 Windows x86-64

numexpr-2.10.2-cp313-cp313-win32.whl (152.1 kB view details)

Uploaded CPython 3.13 Windows x86

numexpr-2.10.2-cp313-cp313-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

numexpr-2.10.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (403.8 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

numexpr-2.10.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (415.5 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

numexpr-2.10.2-cp313-cp313-macosx_11_0_arm64.whl (134.9 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numexpr-2.10.2-cp313-cp313-macosx_10_13_x86_64.whl (145.0 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numexpr-2.10.2-cp312-cp312-win_amd64.whl (145.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

numexpr-2.10.2-cp312-cp312-win32.whl (152.1 kB view details)

Uploaded CPython 3.12 Windows x86

numexpr-2.10.2-cp312-cp312-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

numexpr-2.10.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (400.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

numexpr-2.10.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (411.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

numexpr-2.10.2-cp312-cp312-macosx_11_0_arm64.whl (134.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numexpr-2.10.2-cp312-cp312-macosx_10_13_x86_64.whl (145.0 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

numexpr-2.10.2-cp311-cp311-win_amd64.whl (145.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

numexpr-2.10.2-cp311-cp311-win32.whl (151.9 kB view details)

Uploaded CPython 3.11 Windows x86

numexpr-2.10.2-cp311-cp311-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

numexpr-2.10.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (398.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

numexpr-2.10.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (410.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

numexpr-2.10.2-cp311-cp311-macosx_11_0_arm64.whl (134.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numexpr-2.10.2-cp311-cp311-macosx_10_9_x86_64.whl (145.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numexpr-2.10.2-cp310-cp310-win_amd64.whl (145.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

numexpr-2.10.2-cp310-cp310-win32.whl (151.9 kB view details)

Uploaded CPython 3.10 Windows x86

numexpr-2.10.2-cp310-cp310-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

numexpr-2.10.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (397.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

numexpr-2.10.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (408.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

numexpr-2.10.2-cp310-cp310-macosx_11_0_arm64.whl (134.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numexpr-2.10.2-cp310-cp310-macosx_10_9_x86_64.whl (145.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numexpr-2.10.2-cp39-cp39-win_amd64.whl (145.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

numexpr-2.10.2-cp39-cp39-win32.whl (151.9 kB view details)

Uploaded CPython 3.9 Windows x86

numexpr-2.10.2-cp39-cp39-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

numexpr-2.10.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (396.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

numexpr-2.10.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (408.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

numexpr-2.10.2-cp39-cp39-macosx_11_0_arm64.whl (134.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numexpr-2.10.2-cp39-cp39-macosx_10_9_x86_64.whl (145.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numexpr-2.10.2.tar.gz.

File metadata

  • Download URL: numexpr-2.10.2.tar.gz
  • Upload date:
  • Size: 106.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.2.tar.gz
Algorithm Hash digest
SHA256 b0aff6b48ebc99d2f54f27b5f73a58cb92fde650aeff1b397c71c8788b4fff1a
MD5 2980f95e0dde55c31c0749ddfbadd8f2
BLAKE2b-256 2167c7415cf04ebe418193cfd6595ae03e3a64d76dac7b9c010098b39cc7992e

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.10.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 145.1 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 d7a3fc83c959288544db3adc70612475d8ad53a66c69198105c74036182d10dd
MD5 5420046a9be80ff65575df238a86c259
BLAKE2b-256 be7a8ce360a1848bb5bcc30a414493371678f43790ece397f8652d5f65757e57

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp313-cp313-win32.whl.

File metadata

  • Download URL: numexpr-2.10.2-cp313-cp313-win32.whl
  • Upload date:
  • Size: 152.1 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.2-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 ec04c9a3c050c175348801e27c18c68d28673b7bfb865ef88ce333be523bbc01
MD5 9fb183949ba5ea56577cd77949fec287
BLAKE2b-256 bd5a955bf5b5cf8f3de7b044a999e36327e14191fa073ed0e329456ed0f8161d

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ebb73b93f5c4d6994f357fa5a47a9f7a5485577e633b3c46a603cb01445bbb19
MD5 1e19acea7a9fc4a1a1e17519c6f0b41e
BLAKE2b-256 803560e9041fd709fe98dd3109d73a03cdffaeb6ee2089179155f5c3754e9934

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9309f2e43fe6e4560699ef5c27d7a848b3ff38549b6b57194207cf0e88900527
MD5 bd489213d3d58e01fd72f42ff8627bf9
BLAKE2b-256 7eb064c04c9f8b4a563218d00daa1ec4563364961b79025162c5276ab2c7c407

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5b3f814437d5a10797f8d89d2037cca2c9d9fa578520fc911f894edafed6ea3e
MD5 e33bdccc270ee1fdb34eabd17c4b588b
BLAKE2b-256 489bc9128ffb453205c2a4c84a3abed35447c7591c2c2812e77e34fd238cb2bb

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 81d1dde7dd6166d8ff5727bb46ab42a6b0048db0e97ceb84a121334a404a800f
MD5 0e40bd03f9379a9b12f804fc53c813c6
BLAKE2b-256 eccfbb2bcd81d6f3243590e19ac3e7795a1a370f3ebcd8ecec1f46dcd5333f37

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a37d6a51ec328c561b2ca8a2bef07025642eca995b8553a5267d0018c732976d
MD5 c7368b1f293898397ac406697d36c61d
BLAKE2b-256 8ccb2ea1848c46e4d75073c038dd75628d1aa442975303264ed230bf90f74f44

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.10.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 145.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 57b59cbb5dcce4edf09cd6ce0b57ff60312479930099ca8d944c2fac896a1ead
MD5 85d7a44f97098cd7c1778ed3b261b884
BLAKE2b-256 b8259ae599994076ef2a42d35ff6b0430da002647f212567851336a6c7b132d6

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: numexpr-2.10.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 152.1 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 cb845b2d4f9f8ef0eb1c9884f2b64780a85d3b5ae4eeb26ae2b0019f489cd35e
MD5 9e809d5916859f0ea90e8e33a1668773
BLAKE2b-256 c1d417e4434f989e4917d31cbd88a043e1c9c16958149cf43fa622987111392b

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f9d7805ccb6be2d3b0f7f6fad3707a09ac537811e8e9964f4074d28cb35543db
MD5 9b0443fdbbd62f4939c210b6d79516ba
BLAKE2b-256 ea4da167d1a215fe10ce58c45109f2869fd13aa0eef66f7e8c69af68be45d436

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 97298b14f0105a794bea06fd9fbc5c423bd3ff4d88cbc618860b83eb7a436ad6
MD5 48604fd3e4285e9ea092ad2562525eaf
BLAKE2b-256 7d9c6b671dd3fb67d7e7da93cb76b7c5277743f310a216b7856bb18776bb3371

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5191ba8f2975cb9703afc04ae845a929e193498c0e8bcd408ecb147b35978470
MD5 a73d1a86c3cc85ce0b01214ca8faceb4
BLAKE2b-256 0a520ed3b306d8c9944129bce97fec73a2caff13adbd7e1df148d546d7eb2d4d

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a42963bd4c62d8afa4f51e7974debfa39a048383f653544ab54f50a2f7ec6c42
MD5 2e0bf8c49b4ea33cbea1753908a01c41
BLAKE2b-256 3e3cfcd5a812ed5dda757b2d9ef2764a3e1cca6f6d1f02dbf113dc23a2c7702a

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b5323a46e75832334f1af86da1ef6ff0add00fbacdd266250be872b438bdf2be
MD5 4080e0b5bf5fd8b852431b2a7541dd20
BLAKE2b-256 2b96d5053dea06d8298ae8052b4b049cbf8ef74998e28d57166cc27b8ae909e2

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.10.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 145.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e2d0ae24b0728e4bc3f1d3f33310340d67321d36d6043f7ce26897f4f1042db0
MD5 4430f67cf821917efe0d8f485d3ace1f
BLAKE2b-256 04325882ed1dbd96234f327a73316a481add151ff827cfaf2ea24fb4d5ad04db

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: numexpr-2.10.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 151.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 3bf01ec502d89944e49e9c1b5cc7c7085be8ca2eb9dd46a0eafd218afbdbd5f5
MD5 e1ddc5d3a63bd72c2161e993bae42927
BLAKE2b-256 3051406e572531d817480bd612ee08239a36ee82865fea02fce569f15631f4ee

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ebdbef5763ca057eea0c2b5698e4439d084a0505d9d6e94f4804f26e8890c45e
MD5 f03575e490f9838a8e46f734d8b765fd
BLAKE2b-256 a2d5ec734e735eba5a753efed5be3707ee7447ebd371772f8081b65a4153fb97

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4213a92efa9770bc28e3792134e27c7e5c7e97068bdfb8ba395baebbd12f991b
MD5 e1f79fcb1bfdbe881903037105aad0ad
BLAKE2b-256 895a0f5c5b8a3a6d34eeecb30d0e2f722d50b9b38c0e175937e7c6268ffab997

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 83fcb11988b57cc25b028a36d285287d706d1f536ebf2662ea30bd990e0de8b9
MD5 59951a688ee18f5f63a5618b4144c7d7
BLAKE2b-256 3ffb639ec91d2ea7b4a5d66e26e8ef8e06b020c8e9b9ebaf3bab7b0a9bee472e

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d9a42f5c24880350d88933c4efee91b857c378aaea7e8b86221fff569069841e
MD5 65802b0c875aa8cd109ed9bfb8ac2d4e
BLAKE2b-256 6664428361ea6415826332f38ef2dd5c3abf4e7e601f033bfc9be68b680cb765

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6b360eb8d392483410fe6a3d5a7144afa298c9a0aa3e9fe193e89590b47dd477
MD5 af55ed4d92dee5587c85cde14b7605bf
BLAKE2b-256 deb7f25d6166f92ef23737c1c90416144492a664f0a56510d90f7c6577c2cd14

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.10.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 145.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 deb64235af9eeba59fcefa67e82fa80cfc0662e1b0aa373b7118a28da124d51d
MD5 8880ebae5ddf98e54dcd79e120057855
BLAKE2b-256 71fa0124f0c2a502a0bac4553c8a171c551f154cf80a83a15e40d30c43e48a7e

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.10.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 151.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ba85371c9a8d03e115f4dfb6d25dfbce05387002b9bc85016af939a1da9624f0
MD5 75ec0497bcc0373da5c4dd30e913d3d5
BLAKE2b-256 cc72415262a7bdda706c41bf8254311a5ca13d3b8532341ab478be4583d7061a

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ce8cccf944339051e44a49a124a06287fe3066d0acbff33d1aa5aee10a96abb7
MD5 4b038d0269ce2b40aa46d128bf363952
BLAKE2b-256 9ca029bcb31a9debb743e3dc46bacd55f4f6ee6a77d95eda5c8dca19a29c0627

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 15f59655458056fdb3a621b1bb8e071581ccf7e823916c7568bb7c9a3e393025
MD5 3cb3cbd91df83799eb5e773a30865373
BLAKE2b-256 25abcb5809cb1f66431632d63dc028c58cb91492725c74dddc4b97ba62e88a92

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0db5ff5183935d1612653559c319922143e8fa3019007696571b13135f216458
MD5 7ed8f8507b783ed9637fde320814dd84
BLAKE2b-256 7cd66641864b0446ce472330de7644c78f90bd7e55d902046b44161f92721279

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3fc2b8035a0c2cdc352e58c3875cb668836018065cbf5752cb531015d9a568d8
MD5 8d6e43d01da1ec35d3884102314012c5
BLAKE2b-256 316ab1f08141283327478a57490c0ab3f26a634d4741ff33b9e22f760a7cedb0

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b5b0e82d2109c1d9e63fcd5ea177d80a11b881157ab61178ddbdebd4c561ea46
MD5 c435f50c5f877f67c4dbf6b65465c73a
BLAKE2b-256 fddcbd84219318826d138b7e729ac3ffce3c706ab9d810ce74326a55c7252dd1

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.10.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 145.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 734b64c6d6a597601ce9d0ef7b666e678ec015b446f1d1412c23903c021436c3
MD5 3c8a552c089306bcd02d2bc825ca3b4d
BLAKE2b-256 7081affb9ff26e8accb210fe5585b095bd6872f5614d18b76cd53888e955ed9a

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: numexpr-2.10.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 151.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 eb278ccda6f893a312aa0452701bb17d098b7b14eb7c9381517d509cce0a39a3
MD5 63ebd5beca055609982935fd2f9c894d
BLAKE2b-256 061d068c09a3c013c1178495f73a21ebd6ee25b9f0fc4202cea38b7a826c43a2

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 037859b17a0abe2b489d4c2cfdadd2bf458ec80dd83f338ea5544c7987e06b85
MD5 533c10ab70ef9db105a6e4a21a004d44
BLAKE2b-256 4790e3f12670b3cca9bed85096671265e0f65cde6cf4646baadd4ee9c33944a8

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a018a7d81326f4c73d8b5aee61794d7d8514512f43957c0db61eb2a8a86848c7
MD5 af2d2d0d9edd458f54f386a6ef9cf082
BLAKE2b-256 edf2009d9dd8cd22f253fd6ead4165f81fafbe22489c1cfea612e18aa3dcb0fa

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c3a23c3002ab330056fbdd2785871937a6f2f2fa85d06c8d0ff74ea8418119d1
MD5 9bb702c2b5bf7f9cbe9d18d281818071
BLAKE2b-256 f530f1a48c485183da517bd28e0df6fee337d12bbb0cd2d6bf13f8f5695afd37

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2aa05ac71bee3b1253e73173c4d7fa96a09a18970c0226f1c2c07a71ffe988dc
MD5 9e438bf02671d161f51c549c30307fc0
BLAKE2b-256 bbc59ecfa0da1d93d57e3f447d10da8cf6d695c93131cec085625e5092b37631

See more details on using hashes here.

File details

Details for the file numexpr-2.10.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0495f8111c3633e265248709b8b3b521bbfa646ba384909edd10e2b9a588a83a
MD5 22ec28c3ebeee16a5b9a7ff792a3a539
BLAKE2b-256 416a06a225ac970c5921f41bc069a30438ff64fd79ef5e828f5ec2d4f6658307

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page