Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Robert A. McLeod

Contact:
robbmcleod@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi.org/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most Nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of `gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first.The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installating the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

python setup.py build install

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential…).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.7.3.tar.gz (97.9 kB view details)

Uploaded Source

Built Distributions

numexpr-2.7.3-cp39-cp39-win_amd64.whl (93.7 kB view details)

Uploaded CPython 3.9Windows x86-64

numexpr-2.7.3-cp39-cp39-win32.whl (91.4 kB view details)

Uploaded CPython 3.9Windows x86

numexpr-2.7.3-cp39-cp39-manylinux2014_aarch64.whl (483.7 kB view details)

Uploaded CPython 3.9

numexpr-2.7.3-cp39-cp39-manylinux2010_x86_64.whl (472.0 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ x86-64

numexpr-2.7.3-cp39-cp39-manylinux1_x86_64.whl (472.0 kB view details)

Uploaded CPython 3.9

numexpr-2.7.3-cp39-cp39-macosx_10_9_x86_64.whl (99.5 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

numexpr-2.7.3-cp38-cp38-win_amd64.whl (93.4 kB view details)

Uploaded CPython 3.8Windows x86-64

numexpr-2.7.3-cp38-cp38-win32.whl (91.0 kB view details)

Uploaded CPython 3.8Windows x86

numexpr-2.7.3-cp38-cp38-manylinux2014_aarch64.whl (485.1 kB view details)

Uploaded CPython 3.8

numexpr-2.7.3-cp38-cp38-manylinux2010_x86_64.whl (473.4 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

numexpr-2.7.3-cp38-cp38-manylinux1_x86_64.whl (473.4 kB view details)

Uploaded CPython 3.8

numexpr-2.7.3-cp38-cp38-macosx_10_9_x86_64.whl (99.0 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

numexpr-2.7.3-cp37-cp37m-win_amd64.whl (93.3 kB view details)

Uploaded CPython 3.7mWindows x86-64

numexpr-2.7.3-cp37-cp37m-win32.whl (90.8 kB view details)

Uploaded CPython 3.7mWindows x86

numexpr-2.7.3-cp37-cp37m-manylinux2014_aarch64.whl (483.2 kB view details)

Uploaded CPython 3.7m

numexpr-2.7.3-cp37-cp37m-manylinux2010_x86_64.whl (471.9 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

numexpr-2.7.3-cp37-cp37m-manylinux1_x86_64.whl (471.9 kB view details)

Uploaded CPython 3.7m

numexpr-2.7.3-cp37-cp37m-macosx_10_9_x86_64.whl (102.0 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

numexpr-2.7.3-cp36-cp36m-win_amd64.whl (93.2 kB view details)

Uploaded CPython 3.6mWindows x86-64

numexpr-2.7.3-cp36-cp36m-win32.whl (90.7 kB view details)

Uploaded CPython 3.6mWindows x86

numexpr-2.7.3-cp36-cp36m-manylinux2014_aarch64.whl (481.3 kB view details)

Uploaded CPython 3.6m

numexpr-2.7.3-cp36-cp36m-manylinux2010_x86_64.whl (469.9 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

numexpr-2.7.3-cp36-cp36m-manylinux1_x86_64.whl (469.9 kB view details)

Uploaded CPython 3.6m

numexpr-2.7.3-cp36-cp36m-macosx_10_9_x86_64.whl (101.9 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

numexpr-2.7.3-cp35-cp35m-win_amd64.whl (93.2 kB view details)

Uploaded CPython 3.5mWindows x86-64

numexpr-2.7.3-cp35-cp35m-win32.whl (90.7 kB view details)

Uploaded CPython 3.5mWindows x86

numexpr-2.7.3-cp35-cp35m-manylinux2014_aarch64.whl (480.7 kB view details)

Uploaded CPython 3.5m

numexpr-2.7.3-cp35-cp35m-manylinux2010_x86_64.whl (469.2 kB view details)

Uploaded CPython 3.5mmanylinux: glibc 2.12+ x86-64

numexpr-2.7.3-cp35-cp35m-manylinux1_x86_64.whl (469.2 kB view details)

Uploaded CPython 3.5m

numexpr-2.7.3-cp35-cp35m-macosx_10_9_x86_64.whl (102.0 kB view details)

Uploaded CPython 3.5mmacOS 10.9+ x86-64

numexpr-2.7.3-cp27-cp27mu-manylinux2010_x86_64.whl (473.9 kB view details)

Uploaded CPython 2.7mumanylinux: glibc 2.12+ x86-64

numexpr-2.7.3-cp27-cp27mu-manylinux1_x86_64.whl (473.9 kB view details)

Uploaded CPython 2.7mu

numexpr-2.7.3-cp27-cp27m-win_amd64.whl (107.0 kB view details)

Uploaded CPython 2.7mWindows x86-64

numexpr-2.7.3-cp27-cp27m-win32.whl (111.9 kB view details)

Uploaded CPython 2.7mWindows x86

numexpr-2.7.3-cp27-cp27m-manylinux2010_x86_64.whl (473.9 kB view details)

Uploaded CPython 2.7mmanylinux: glibc 2.12+ x86-64

numexpr-2.7.3-cp27-cp27m-manylinux1_x86_64.whl (473.9 kB view details)

Uploaded CPython 2.7m

numexpr-2.7.3-cp27-cp27m-macosx_10_9_x86_64.whl (102.0 kB view details)

Uploaded CPython 2.7mmacOS 10.9+ x86-64

File details

Details for the file numexpr-2.7.3.tar.gz.

File metadata

  • Download URL: numexpr-2.7.3.tar.gz
  • Upload date:
  • Size: 97.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3.tar.gz
Algorithm Hash digest
SHA256 43616529f9b7d1afc83386f943dc66c4da5e052f00217ba7e3ad8dd1b5f3a825
MD5 e989f4ce852d72225c7f0a26803609e4
BLAKE2b-256 1791688234440a7b45a4f6a9931d2541de5e9e48b2c54b8fcd5951ab14bd6a12

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 93.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c2605e5665b0d7362e0d2b92683387c12e15c7440daf702a7637f7502a967810
MD5 0feac0e77964430a26aa3ab1b91f1ac5
BLAKE2b-256 35d7f49abe5d5753506fd07c1f4e23ac791fe0ad84454502e78975b877b1d98d

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 91.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2e14b44a79030fbe25f16393162a4d21ced14056fac49ff73856f661a78db731
MD5 4bb382b6c6bae0f4657c9de1b2ab66cf
BLAKE2b-256 72784154e4467c78290ea5f1ad10433eeb851e9cea7544f938ef277d338aee52

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 483.7 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8fc23a49f4266c24a23310c0cb92ff54c4b4f535635f90372b3a2d5cb1f83329
MD5 fe58c8e70d7de1b1e13c995b9fdaf48e
BLAKE2b-256 fa0af37e90b538872b15f2c05d0c198c0205d5a394975ae47a89817d2ec0744b

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 472.0 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7ab40e2b438f4ea2ea8234c63639cdf5072cdb29d0ac521307854efe0281a567
MD5 d987f0296e21a6bdf05c70e96242e594
BLAKE2b-256 4e88ccd8973d0dde04e95f6fbc7818f770a18293de7348fc3f9b66e9bf44a2f9

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 472.0 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 05b97b19e864a5d1a0b106933b1637233a2444fd375685bead264a818f847ef2
MD5 3e9c25582e5bc9fda16173be687b8bcc
BLAKE2b-256 4cd9792947604c710dfc2d842756832d77f00e3a666bfc9503bdca7a0bcdf49f

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 99.5 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8e0e48d72391543b68d0471fac2e31c614efdce4036e2a0a8a182fde1edb0e0
MD5 b6aa144214c4fc284eb1cdbf14427bf7
BLAKE2b-256 3b3b9a18a8d732ecdb38676b963e36953902880205a07d3471d2b4d35c497559

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 93.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d14ae09318ad86579e35aacf1596c83d5db1139cd68615967ee23605e11f5d82
MD5 31f59c2c77a763c93db238af1c234f54
BLAKE2b-256 afa69a14d69e96df2ebad0e2176f9b79a21b30d8b461460a8e07e64da1d3f056

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 91.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 dfdca3d1f4c83fa8fd3ee7573110efd13e838543896641b89367622ec6a67eb4
MD5 2d3d957692ade167c331365f93d37a12
BLAKE2b-256 b4cefd26673163a2a7b4c7d6b19cf391b7d036f3238ccb286f5915bfaf4b740c

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 485.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aae4ce158da53ebc47df053de90fed9d0d51fa0df8cc481abc8a901ea4f0cec7
MD5 e7b1077b44a4e6d201b0de33f67b7176
BLAKE2b-256 b3d0f9f6664c0b8b208b9f9f6b6beb4e8c05a77d51ba65378d163692f47e47d6

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 473.4 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5d6dbf050a9b8ebff0b7706ebeaf1cd57d64ef4dfe61aef3790851b481daf6b5
MD5 e41dc25bbc18ffeb8aae27f6498332eb
BLAKE2b-256 7475abc19c4c17beb365dedb010918553e43f2c03e77545e53737db20b92948b

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 473.4 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dc707486b1f3dda18a39bc4d06a0a09d3c0ea47bd6b99fdb98adb26d1277253f
MD5 d1a642d6b036cacceda76e4dae9deb29
BLAKE2b-256 dd5b254b8e104049b7a42fbfa32b459f81da8e0dec22fe0ee1d6f2773365ca8c

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 99.0 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4527a0a7b04f858a73c348c9c4ce8441b7a54965db74a32ba808c51d9d53b7cd
MD5 bc1d9964603592a5e781508f87ab2552
BLAKE2b-256 bfe54e7d21df66bae17599147908bc6c4d5488136c6eade7a19eeb136db62f2e

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 93.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e000570a6a704c594832ff4fc45f18864b721b7b444a185b365dbb03d3fe3abb
MD5 e6a7bdfd7c7f9992662756b17b24f2c5
BLAKE2b-256 44b1eb0d63235ebe46796f09f4fee376d80c550465b82dc036716fe3471e2771

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 90.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 e985026e64350dd59fd91a09bc364edf706d58b12e01362ddfa63829878bd434
MD5 48d191f2c74ea7e17781270f2f70bbe9
BLAKE2b-256 7e074a4e0ae2ee6b4f36d8464d23acd70cb1be05eaaccf8e0bf7b5332c344bfe

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 483.2 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0a9124a66a61b05ea84b832358d6aa5561c30e69b4dcaea819b296f4f025f89
MD5 dc498a78dd9fb7b0064e19850ca8e966
BLAKE2b-256 9d621ca84397f6a7b55e38e2958b200cf32f87ca13c054454f065247659107a1

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 471.9 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5f4122bd58aa4e4891814c2f72bd47b1cdb202c9d863ea96c5394dffb72a16e2
MD5 be4e283e4dfe406ccaf6a7cd8a643e96
BLAKE2b-256 8d37851139d750ed1d88754ff0f69b7bcf83e8a6464207007a9b4a54942302d4

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 471.9 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 51277a530a353e0f94665b44615249d7e7075f0c73f78d4743da632fc44bc648
MD5 749937160245790591943529ec4ff17c
BLAKE2b-256 2076c2b591b7983ecccee97790634ca5b879b4a89b4eb594e5371379aa852fa4

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 102.0 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 618259287b8b81a352a7d088ad03fe3b393a842ccb45f0b3cfc6a712d41b7595
MD5 ca1ab11907b90ef8a270fe0c45c5c1e0
BLAKE2b-256 bf500205f0801469b4d982f903111844f43b2418901955e1288a3f8773655a32

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 93.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 833a363c86266424349467b53f4060f77aaa7ec03c1e6f38c54e69c65ceebf30
MD5 68f6c4187476a9b58df40340edfe009f
BLAKE2b-256 b00f6d44c631a4cf074cf8aad03bf0e3459b6583850fd74cd288ee7720d20653

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 90.7 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 8b76bcca930cbf0db0fe98b6a51d6286dff77d525dad670cb7750e29a138d434
MD5 781ff0e7098de66adbe66d33c8f687b0
BLAKE2b-256 bd087ed74c6a46f4354637b38dd55165067a920c723bb7abc61418898a7f3bd5

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 481.3 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 90ea6d5813e1906bb203ef220a600b30d83e75aea2607a7e7037cceae9e93346
MD5 961a8ae0a05e866e1689f591f435cecc
BLAKE2b-256 8f4165e95235849dfaf1ad6e8c300af30a4909383acb51b7c9632becaa59dde1

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 469.9 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d423441593a952ac56d1f774068b81fb22f514fb68873c066578345a6af74c0d
MD5 3746d003157e9de1aac9e8ee3ff2d97f
BLAKE2b-256 d0028e9e8ac639e3d88865440d6175a6e1b60da9349b01354c10a2e8e45d4816

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 469.9 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a3f1cec8657bd3920869a2ea27f98d68ac3000334f366d844a9670ae671fe4bd
MD5 d84573af3342cdc3e3456a69b93591e8
BLAKE2b-256 929cb1ba18571bd823e4928d267df10bf4ac4b6556f14a8e783fa834dafa2717

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 101.9 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3daa55515ee3cb40bf5ab8263c0c13fff8d484d64d107a9c414e8ca151dc08a6
MD5 a24fecbe4a0bb04f1534a8f01cf715eb
BLAKE2b-256 55af7155792f36f6e8f4c3e78d89fa6f53ef874c6c61ee05cced390fac089b30

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 93.2 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 23718ac5f2ebae995f5899509624781b375da568f2b645b5d1fd6dbb17f41a56
MD5 90876bc41fe71124f26d391f82fe58da
BLAKE2b-256 23edf99b8fefe9e9a316cb9ef38aac008a3d03e8ab616c63865a44d8b910b256

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp35-cp35m-win32.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 90.7 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 785065819ce98e3d3dd853794244e0de190d7ba36ab42c8fd79e0e9cd40de7af
MD5 881be5c465d100356cb0ce91c58e1795
BLAKE2b-256 ce768cc6cd874b359e884dffcfe3f619666d0f89f5b78c86178a1ba5f5656ca2

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp35-cp35m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp35-cp35m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 480.7 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp35-cp35m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5223a519f48754dd350723d9fbcadbcd0476881bc954a281a09a6538ecabfc27
MD5 1ef5565a7100dabb792308805619d076
BLAKE2b-256 23597712ddfb1c8f472fd2d37a25be35aa89de269257ed5cdde60afca1e216f4

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 469.2 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 eeeb6325df6cf3f3ab7d9dbabf3bc03ac88b7e2f2aed21419c31e23c3048dce1
MD5 2b540c3944c7fb47251abf9a615211d1
BLAKE2b-256 e52b96765f6fbd036864c8f5628e9a0092ac20b88c5cabe331fdcc4326195c33

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 469.2 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f9df0a74d39616fd011071c5850418f244bac414f24ed55c00dcf3c5385e8374
MD5 90f0629980fe9da891ba5c3652a47cd8
BLAKE2b-256 6c661a21f96ab6b824df9b2b005c361478b706fb58a31bde09ba5c79b14627b4

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 102.0 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 602df9b5c500d0a887dc96b4cfd16fb60ae7ef39ccd6f013f4df2ee11ae70553
MD5 0a06e6552ca502f8f013916c92351739
BLAKE2b-256 b868146112746149f7f44253f23e6dbdb210c5788c18561cb125260307e898c8

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 473.9 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c978c49bd9dded6a4ba6b3501e3a34e3aba9312cbb7d800bed7ac6fcd2d5949d
MD5 562a6c83cc7b3f2c25f7c24ab37844d1
BLAKE2b-256 fa81a5ccdc7306a1d3711b5ec2d57028ee3b56affd96765480bf85f2764a7cc4

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 473.9 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0732c9989bff8568ee78fa461f3698166d4ac79363860be22ff49eae1dcd15e7
MD5 2c633cf3ed05cb01f49344904f1178be
BLAKE2b-256 7bf2a6f1b08b19122b13896627d9d45ac4ec795ebf5f57e9bdd4773f028dc3e4

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 107.0 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 97753d17d1ea39e082b1907b99b6cb63cac7d1dfa512d2ff5079eb7bfab1ea88
MD5 c0784e0d7a3c8922b9b6c52d0235f35c
BLAKE2b-256 c328752cc05d6f94997e2cceef6c008e96a0cf89fca75ea8bf197395baa2f266

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp27-cp27m-win32.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 111.9 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 c9218aeb76717768f617362b72a87e9219da95ba7cdec0732ccecc4a4719124c
MD5 acfc492519aac54c6ad5eaf2fe08fee8
BLAKE2b-256 1010e195ce563415302a10abde921c2561537b4e71a1b2bb3536baf786b64635

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 473.9 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 24cdb8c0e93f31387a4c2ddd09a687874c006e6139fd68bcf77b96e51d17cb01
MD5 b29d0aab5c1dce5a8534273df487f72a
BLAKE2b-256 aedee2af7f1e9d933e2bc2e387276743e645b4c6b9c0c6b28ef531db53da04b7

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 473.9 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 99472731bc1111f5d73285dd2a4c228b5bfb176f785a567872e0fbfec6584f2b
MD5 b781ddd172ef7094b4bd74ff6b9a30f6
BLAKE2b-256 b38ce3bf8f859e21dae012221a13bd7880e73a560434f40e703b19c46bc013a8

See more details on using hashes here.

File details

Details for the file numexpr-2.7.3-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.3-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 102.0 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for numexpr-2.7.3-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 74df157ab4577bfc83c14f4e39d14781b06ade5406d3efef049f90c88d8c28ea
MD5 5fbbc94cdf80ce2114e57acf79cb122c
BLAKE2b-256 95cd601d2849bf99b0f82d8c9d240cf32b14eb06a3db3b61bbfa99bb7b254539

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page