Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Francesc Alted

Contact:
faltet@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi.org/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most *nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first. The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installing the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

python setup.py build install

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential, …).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.8.8.tar.gz (103.0 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

numexpr-2.8.8-cp312-cp312-win_amd64.whl (96.6 kB view details)

Uploaded CPython 3.12Windows x86-64

numexpr-2.8.8-cp312-cp312-win32.whl (103.3 kB view details)

Uploaded CPython 3.12Windows x86

numexpr-2.8.8-cp312-cp312-musllinux_1_1_x86_64.whl (922.9 kB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

numexpr-2.8.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (379.9 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

numexpr-2.8.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (381.9 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

numexpr-2.8.8-cp312-cp312-macosx_11_0_arm64.whl (91.8 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

numexpr-2.8.8-cp312-cp312-macosx_10_9_x86_64.whl (102.6 kB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

numexpr-2.8.8-cp311-cp311-win_amd64.whl (96.4 kB view details)

Uploaded CPython 3.11Windows x86-64

numexpr-2.8.8-cp311-cp311-win32.whl (103.1 kB view details)

Uploaded CPython 3.11Windows x86

numexpr-2.8.8-cp311-cp311-musllinux_1_1_x86_64.whl (920.7 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

numexpr-2.8.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (377.2 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

numexpr-2.8.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (379.9 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

numexpr-2.8.8-cp311-cp311-macosx_11_0_arm64.whl (91.7 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

numexpr-2.8.8-cp311-cp311-macosx_10_9_x86_64.whl (102.5 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

numexpr-2.8.8-cp310-cp310-win_amd64.whl (96.4 kB view details)

Uploaded CPython 3.10Windows x86-64

numexpr-2.8.8-cp310-cp310-win32.whl (103.1 kB view details)

Uploaded CPython 3.10Windows x86

numexpr-2.8.8-cp310-cp310-musllinux_1_1_x86_64.whl (917.4 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

numexpr-2.8.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (374.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

numexpr-2.8.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (377.4 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

numexpr-2.8.8-cp310-cp310-macosx_11_0_arm64.whl (91.7 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

numexpr-2.8.8-cp310-cp310-macosx_10_9_x86_64.whl (102.5 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

numexpr-2.8.8-cp39-cp39-win_amd64.whl (96.4 kB view details)

Uploaded CPython 3.9Windows x86-64

numexpr-2.8.8-cp39-cp39-win32.whl (103.1 kB view details)

Uploaded CPython 3.9Windows x86

numexpr-2.8.8-cp39-cp39-musllinux_1_1_x86_64.whl (916.6 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

numexpr-2.8.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (374.3 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

numexpr-2.8.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (376.8 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

numexpr-2.8.8-cp39-cp39-macosx_11_0_arm64.whl (91.7 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

numexpr-2.8.8-cp39-cp39-macosx_10_9_x86_64.whl (102.5 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file numexpr-2.8.8.tar.gz.

File metadata

  • Download URL: numexpr-2.8.8.tar.gz
  • Upload date:
  • Size: 103.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for numexpr-2.8.8.tar.gz
Algorithm Hash digest
SHA256 e76ce4d25372f46170cf7eb1ff14ed5d9c69a0b162a405063cbe481bafe3af34
MD5 32b265940a208f0783189eeef0b53126
BLAKE2b-256 f3b4367399eeda5a889e0225c175d4ac560167be90653cfb46a448854f09d31a

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.8-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 96.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for numexpr-2.8.8-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 925927cd1f610593e7783d8f2e12e3d800d5928601e077e4910e2b50bde624b6
MD5 d5c2f9e69ff95b91930b403e854b0e7a
BLAKE2b-256 50a07ea88a0c1e47c3b4c68a129e66637e34f66d97bb61bec1e07de30dc522bd

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp312-cp312-win32.whl.

File metadata

  • Download URL: numexpr-2.8.8-cp312-cp312-win32.whl
  • Upload date:
  • Size: 103.3 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for numexpr-2.8.8-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 399cb914b41c4027ba88a18f6b8ccfc3af5c32bc3b1758403a7c44c72530618a
MD5 2454abd93893c0ffc466b74880525515
BLAKE2b-256 97755cf60cad4b2b10a3a7fb5d6a37c0a9739c5d9b6fffba6b170c9cbf6a4030

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2ae264c35fa67cd510191ab8144f131fddd0f1d13413af710913ea6fc0c6aa61
MD5 d8b05a540231d12d88b43a80e54b6dcd
BLAKE2b-256 96d4cd50cdf1c564d5578ed5b61246472e335b3df751717760ce583c983cc738

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 121b049b6909787111daf92919c052c4fd87b5691172e8f19f702b96f20aaafa
MD5 9adfafa6055e3d5e95bf0c0ab55d6c70
BLAKE2b-256 344d19c95b3c73df44ce0351dd788ded1d87b6095f765d5fc6653502644009b2

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f031ac4e70f9ad867543bfbde8452e9d1a14f0525346b4b8bd4e5c0f1380a11c
MD5 59ec2c97ce346c88c6337bd71c1fc835
BLAKE2b-256 4031e61dad79aa449196f828ac6506131c0f7b025a72231fe01629edf069a5e9

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3f168b4b42d4cb120fe1993676dcf74b77a3e8e45b58855566da037cfd938ca3
MD5 6a63dc1fc499b1e7ef5bdf85514d1f29
BLAKE2b-256 d01d04e298cc61846d426a6bd4cb5b04c37f2649b7978327dd1ae45026234d2d

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 76f0f010f9c6318bae213b21c5c0e381c2fc9c9ecb8b35f99f5030e7ac96c9ce
MD5 5e50964da020a046efcc2fa06ad631e6
BLAKE2b-256 0b441987620004e93abefed76e7fae2f5dec0136a8238ba0183dc38307acf90b

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.8-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 96.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for numexpr-2.8.8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4f01d71db6fdb97a68def5407e2dbd748eaea9d98929db08816de40aa4ae3084
MD5 c928349a881f22f45f7315b1a6d589b4
BLAKE2b-256 94559bf15fd284ad7777c13f0b4f2b535a921d71f94ba2e48090aa5ee03a815f

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp311-cp311-win32.whl.

File metadata

  • Download URL: numexpr-2.8.8-cp311-cp311-win32.whl
  • Upload date:
  • Size: 103.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for numexpr-2.8.8-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 bf8c517bbbb82c07c23c17f9d52b4c9f86601f57d48e87c0cbda24af5907f4dd
MD5 1d54261fd3fd3b0586fd3f6828fbed7e
BLAKE2b-256 bb5d69693f2a46770707617b09fb1c71e4e8a8aceb3e28d421f664a4fa8bc353

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ccef9b09432d59229c2a737882e55de7906006452003323e107576f264cec373
MD5 9348d507f676f4808a2fa609be9b5df8
BLAKE2b-256 a0187a050de02275df32d196964b1b6c69baf75ca991c67e09e9637ccc2c6d23

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a92f230dd9d6c42803f855970e93677b44290b6dad15cb6796fd85edee171ce
MD5 cc668748c7dfc1f2a14a8396b5f7bd76
BLAKE2b-256 ae6b445c5a891cf3af130a24dc086fcd311efc5cf727ea6b5ba90c3e0c38b601

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a82d710145b0fbaec919dde9c90ed9df1e6785625cc36d1c71f3a53112b66fc5
MD5 a720f5faa9f9c7fce19ab9d3b441ec73
BLAKE2b-256 e468a0f0dd73be6d9a8cd00db8e9fb8661e8ed70dfba4989c4d4bd99eb23bb22

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b4649c1dcf9b0c2ae0a7b767dbbbde4e05ee68480c1ba7f06fc7963f1f73acf4
MD5 86fd884b8d37338ee704acd147ced189
BLAKE2b-256 6dc9ff9efe0073434056d7cc166267295fef1d29cc02a1cbbc772e22a488d43e

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 47c05007cd1c553515492c1a78b5477eaaba9cadc5d7b795d49f7aae53ccdf68
MD5 dc0a1b8e0aecaca9353d2f40668edc35
BLAKE2b-256 133fc15f0e56cccde0238b77865444f1a17c7434fb8ed9e303c336a095c87ab2

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.8-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 96.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for numexpr-2.8.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 22ccd67c0fbeae091f2c577f5b9c8046de6631d46b1cbe22aad46a08d2b42c2d
MD5 54ae83f9c67ca31d67693516c9b3d431
BLAKE2b-256 94c5ef19897329200cfd39670a020662d6d78c4aabd3c40400eeba706daf981a

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.8.8-cp310-cp310-win32.whl
  • Upload date:
  • Size: 103.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for numexpr-2.8.8-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 6459dc6ed6abcdeab3cd3667c79f29e4a0f0a02c29ad71ee5cff065e880ee9ef
MD5 a56262cfe57f7cd672a7cf3c42e62334
BLAKE2b-256 29ff8e9ac69d61e4c7f380a432d54b5450518c58b581ce030904bbe326679b14

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 aab17d65751c039d13ed9d49c9a7517b130ef488c1885c4666af9b5c6ad59520
MD5 05aa6933ca71c191cae68cdb2308b9bb
BLAKE2b-256 0a7e0dbe21a0d5ad117eea5a21d1259faf1ee41338c73ffbfe184c08bb8c0ad3

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 307b49fd15ef2ca292f381e67759e5b477410341f2f499a377234f1b42f529a6
MD5 ae011b0ebf9f2b1afe12028e772df56d
BLAKE2b-256 7c8440c366b342ca778cfef35c9d43d146e2e95fc59f311c9b35f338e31664be

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0d7bfc8b77d8a7b04cd64ae42b62b3bf824a8c751ca235692bfd5231c6e90127
MD5 fb84d3a852761029cce0690c9440ae89
BLAKE2b-256 fa6605b89508b19a43db9c799f6dac3a75baf9b3c14adcb8194c7a7289f49978

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dbac846f713b4c82333e6af0814ebea0b4e74dfb2649e76c58953fd4862322dd
MD5 e75991b4c2d31020e4c5802558776130
BLAKE2b-256 4ba50c4dc4d5ebcf5a8ea83101cdd5a47f98c66ae416e9fb765c8d2a43aad557

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 85c9f79e346c26aa0d425ecfc9e5de7184567d5e48d0bdb02d468bb927e92525
MD5 9ed55177933720b072c55680f6b153fa
BLAKE2b-256 5e819a833d089d6b5607951c3fc2cde072a191e6d114c6534c33fbd3e87e228d

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.8-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 96.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for numexpr-2.8.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 12146521b1730073859a20454e75004e38cd0cb61333e763c58ef5171e101eb2
MD5 d9b2d8dfc1300ea1fb3096696b61f725
BLAKE2b-256 80990b26023b9caf833cf85e04098b081e14709c95402844333a5786b07b3d17

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp39-cp39-win32.whl.

File metadata

  • Download URL: numexpr-2.8.8-cp39-cp39-win32.whl
  • Upload date:
  • Size: 103.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for numexpr-2.8.8-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 17104051f0bd83fd350212e268d8b48017d5eff522b09b573fdbcc560c5e7ab3
MD5 c0695a08ec1f33672a3d070f506684be
BLAKE2b-256 8aa042bfe821d04fa508ba937be72bafe3a72d037deb306cba9ce1106cb52c95

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4d83a542d9deefb050e389aacaddea0f09d68ec617dd37e45b9a7cfbcba6d729
MD5 ddbf946d3f6411ad951e4b8543c2a32f
BLAKE2b-256 99a3b7a892bbd6d33c7148bbcf4a6a1a471e9065b8d2f35d5196b3f68ee74dd3

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7badc50efbb2f1c8b78cd68089031e0fd29cbafa6a9e6d730533f22d88168406
MD5 fda4b2365106766257f0652801041b19
BLAKE2b-256 84f8ff8d513a8f10465ff1bcc8f370fcbeddc3a79e210b2e1b0ad56557fd5793

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 296dc1f79d386166dec3bdb45f51caba29ffd8dc91db15447108c04d3001d921
MD5 86ebf993b576266fffe2ab26f853b536
BLAKE2b-256 5953e9301335cd1f4f072ac3bd46575a26366681a803b99c9b570294d9b3337b

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 290f91c7ba7772abaf7107f3cc0601d93d6a3f21c13ee3da93f1b8a9ca3e8d39
MD5 acaa2c26e2a9e635039d07e803bf66cd
BLAKE2b-256 cdc9dc80a04b0e89b4f7fbce39add9c641f6ffbf330a77b7990af36ae97ac637

See more details on using hashes here.

File details

Details for the file numexpr-2.8.8-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.8-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd07793b074cc38e478637cbe738dff7d8eb92b5cf8ffaacff0c4f0bca5270a0
MD5 e0e5d008c1be76958d76be73bde6ec16
BLAKE2b-256 7e1f0eb079e3a47eefc66f2c3887dca0cc046fa6fef6951e784663cdc8b754a2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page