Skip to main content

Multi-class confusion matrix library in Python

Project description


Table of contents

Overview

Installation

⚠️ PyCM 2.4 is the last version to support Python 2.7 & Python 3.4

⚠️ Plotting capability requires Matplotlib (>= 3.0.0) or Seaborn (>= 0.9.1)

Source code

  • Download Version 3.0 or Latest Source
  • Run pip install -r requirements.txt or pip3 install -r requirements.txt (Need root access)
  • Run python3 setup.py install or python setup.py install (Need root access)

PyPI

Conda

Easy install

  • Run easy_install --upgrade pycm (Need root access)

MATLAB

  • Download and install MATLAB (>=8.5, 64/32 bit)
  • Download and install Python3.x (>=3.5, 64/32 bit)
    • [x] Select Add to PATH option
    • [x] Select Install pip option
  • Run pip install pycm or pip3 install pycm (Need root access)
  • Configure Python interpreter
>> pyversion PYTHON_EXECUTABLE_FULL_PATH

Docker

  • Run docker pull sepandhaghighi/pycm (Need root access)
  • Configuration :
    • Ubuntu 16.04
    • Python 3.6

Usage

From vector

>>> from pycm import *
>>> y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2] # or y_actu = numpy.array([2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2])
>>> y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2] # or y_pred = numpy.array([0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2])
>>> cm = ConfusionMatrix(actual_vector=y_actu, predict_vector=y_pred) # Create CM From Data
>>> cm.classes
[0, 1, 2]
>>> cm.table
{0: {0: 3, 1: 0, 2: 0}, 1: {0: 0, 1: 1, 2: 2}, 2: {0: 2, 1: 1, 2: 3}}
>>> print(cm)
Predict 0       1       2       
Actual
0       3       0       0       

1       0       1       2       

2       2       1       3       





Overall Statistics : 

95% CI                                                            (0.30439,0.86228)
ACC Macro                                                         0.72222
ARI                                                               0.09206
AUNP                                                              0.66667
AUNU                                                              0.69444
Bangdiwala B                                                      0.37255
Bennett S                                                         0.375
CBA                                                               0.47778
CSI                                                               0.17778
Chi-Squared                                                       6.6
Chi-Squared DF                                                    4
Conditional Entropy                                               0.95915
Cramer V                                                          0.5244
Cross Entropy                                                     1.59352
F1 Macro                                                          0.56515
F1 Micro                                                          0.58333
FNR Macro                                                         0.38889
FNR Micro                                                         0.41667
FPR Macro                                                         0.22222
FPR Micro                                                         0.20833
Gwet AC1                                                          0.38931
Hamming Loss                                                      0.41667
Joint Entropy                                                     2.45915
KL Divergence                                                     0.09352
Kappa                                                             0.35484
Kappa 95% CI                                                      (-0.07708,0.78675)
Kappa No Prevalence                                               0.16667
Kappa Standard Error                                              0.22036
Kappa Unbiased                                                    0.34426
Krippendorff Alpha                                                0.37158
Lambda A                                                          0.16667
Lambda B                                                          0.42857
Mutual Information                                                0.52421
NIR                                                               0.5
Overall ACC                                                       0.58333
Overall CEN                                                       0.46381
Overall J                                                         (1.225,0.40833)
Overall MCC                                                       0.36667
Overall MCEN                                                      0.51894
Overall RACC                                                      0.35417
Overall RACCU                                                     0.36458
P-Value                                                           0.38721
PPV Macro                                                         0.56667
PPV Micro                                                         0.58333
Pearson C                                                         0.59568
Phi-Squared                                                       0.55
RCI                                                               0.34947
RR                                                                4.0
Reference Entropy                                                 1.5
Response Entropy                                                  1.48336
SOA1(Landis & Koch)                                               Fair
SOA2(Fleiss)                                                      Poor
SOA3(Altman)                                                      Fair
SOA4(Cicchetti)                                                   Poor
SOA5(Cramer)                                                      Relatively Strong
SOA6(Matthews)                                                    Weak
Scott PI                                                          0.34426
Standard Error                                                    0.14232
TNR Macro                                                         0.77778
TNR Micro                                                         0.79167
TPR Macro                                                         0.61111
TPR Micro                                                         0.58333
Zero-one Loss                                                     5

Class Statistics :

Classes                                                           0             1             2             
ACC(Accuracy)                                                     0.83333       0.75          0.58333       
AGF(Adjusted F-score)                                             0.9136        0.53995       0.5516        
AGM(Adjusted geometric mean)                                      0.83729       0.692         0.60712       
AM(Difference between automatic and manual classification)        2             -1            -1            
AUC(Area under the ROC curve)                                     0.88889       0.61111       0.58333       
AUCI(AUC value interpretation)                                    Very Good     Fair          Poor          
AUPR(Area under the PR curve)                                     0.8           0.41667       0.55          
BCD(Bray-Curtis dissimilarity)                                    0.08333       0.04167       0.04167       
BM(Informedness or bookmaker informedness)                        0.77778       0.22222       0.16667       
CEN(Confusion entropy)                                            0.25          0.49658       0.60442       
DOR(Diagnostic odds ratio)                                        None          4.0           2.0           
DP(Discriminant power)                                            None          0.33193       0.16597       
DPI(Discriminant power interpretation)                            None          Poor          Poor          
ERR(Error rate)                                                   0.16667       0.25          0.41667       
F0.5(F0.5 score)                                                  0.65217       0.45455       0.57692       
F1(F1 score - harmonic mean of precision and sensitivity)         0.75          0.4           0.54545       
F2(F2 score)                                                      0.88235       0.35714       0.51724       
FDR(False discovery rate)                                         0.4           0.5           0.4           
FN(False negative/miss/type 2 error)                              0             2             3             
FNR(Miss rate or false negative rate)                             0.0           0.66667       0.5           
FOR(False omission rate)                                          0.0           0.2           0.42857       
FP(False positive/type 1 error/false alarm)                       2             1             2             
FPR(Fall-out or false positive rate)                              0.22222       0.11111       0.33333       
G(G-measure geometric mean of precision and sensitivity)          0.7746        0.40825       0.54772       
GI(Gini index)                                                    0.77778       0.22222       0.16667       
GM(G-mean geometric mean of specificity and sensitivity)          0.88192       0.54433       0.57735       
IBA(Index of balanced accuracy)                                   0.95062       0.13169       0.27778       
ICSI(Individual classification success index)                     0.6           -0.16667      0.1           
IS(Information score)                                             1.26303       1.0           0.26303       
J(Jaccard index)                                                  0.6           0.25          0.375         
LS(Lift score)                                                    2.4           2.0           1.2           
MCC(Matthews correlation coefficient)                             0.68313       0.2582        0.16903       
MCCI(Matthews correlation coefficient interpretation)             Moderate      Negligible    Negligible    
MCEN(Modified confusion entropy)                                  0.26439       0.5           0.6875        
MK(Markedness)                                                    0.6           0.3           0.17143       
N(Condition negative)                                             9             9             6             
NLR(Negative likelihood ratio)                                    0.0           0.75          0.75          
NLRI(Negative likelihood ratio interpretation)                    Good          Negligible    Negligible    
NPV(Negative predictive value)                                    1.0           0.8           0.57143       
OC(Overlap coefficient)                                           1.0           0.5           0.6           
OOC(Otsuka-Ochiai coefficient)                                    0.7746        0.40825       0.54772       
OP(Optimized precision)                                           0.70833       0.29545       0.44048       
P(Condition positive or support)                                  3             3             6             
PLR(Positive likelihood ratio)                                    4.5           3.0           1.5           
PLRI(Positive likelihood ratio interpretation)                    Poor          Poor          Poor          
POP(Population)                                                   12            12            12            
PPV(Precision or positive predictive value)                       0.6           0.5           0.6           
PRE(Prevalence)                                                   0.25          0.25          0.5           
Q(Yule Q - coefficient of colligation)                            None          0.6           0.33333       
QI(Yule Q interpretation)                                         None          Moderate      Weak          
RACC(Random accuracy)                                             0.10417       0.04167       0.20833       
RACCU(Random accuracy unbiased)                                   0.11111       0.0434        0.21007       
TN(True negative/correct rejection)                               7             8             4             
TNR(Specificity or true negative rate)                            0.77778       0.88889       0.66667       
TON(Test outcome negative)                                        7             10            7             
TOP(Test outcome positive)                                        5             2             5             
TP(True positive/hit)                                             3             1             3             
TPR(Sensitivity, recall, hit rate, or true positive rate)         1.0           0.33333       0.5           
Y(Youden index)                                                   0.77778       0.22222       0.16667       
dInd(Distance index)                                              0.22222       0.67586       0.60093       
sInd(Similarity index)                                            0.84287       0.52209       0.57508

>>> cm.print_matrix()
Predict          0    1    2    
Actual
0                3    0    0    

1                0    1    2    

2                2    1    3    

>>> cm.print_normalized_matrix()
Predict          0          1          2          
Actual
0                1.0        0.0        0.0        

1                0.0        0.33333    0.66667    

2                0.33333    0.16667    0.5        

>>> cm.print_matrix(one_vs_all=True,class_name=0)   # One-Vs-All, new in version 1.4
Predict          0    ~    
Actual
0                3    0    

~                2    7    

Direct CM

>>> from pycm import *
>>> cm2 = ConfusionMatrix(matrix={"Class1": {"Class1": 1, "Class2":2}, "Class2": {"Class1": 0, "Class2": 5}}) # Create CM Directly
>>> cm2
pycm.ConfusionMatrix(classes: ['Class1', 'Class2'])
>>> print(cm2)
Predict      Class1       Class2       
Actual
Class1       1            2            

Class2       0            5            





Overall Statistics : 

95% CI                                                            (0.44994,1.05006)
ACC Macro                                                         0.75
ARI                                                               0.17241
AUNP                                                              0.66667
AUNU                                                              0.66667
Bangdiwala B                                                      0.68421
Bennett S                                                         0.5
CBA                                                               0.52381
CSI                                                               0.52381
Chi-Squared                                                       1.90476
Chi-Squared DF                                                    1
Conditional Entropy                                               0.34436
Cramer V                                                          0.48795
Cross Entropy                                                     1.2454
F1 Macro                                                          0.66667
F1 Micro                                                          0.75
FNR Macro                                                         0.33333
FNR Micro                                                         0.25
FPR Macro                                                         0.33333
FPR Micro                                                         0.25
Gwet AC1                                                          0.6
Hamming Loss                                                      0.25
Joint Entropy                                                     1.29879
KL Divergence                                                     0.29097
Kappa                                                             0.38462
Kappa 95% CI                                                      (-0.354,1.12323)
Kappa No Prevalence                                               0.5
Kappa Standard Error                                              0.37684
Kappa Unbiased                                                    0.33333
Krippendorff Alpha                                                0.375
Lambda A                                                          0.33333
Lambda B                                                          0.0
Mutual Information                                                0.1992
NIR                                                               0.625
Overall ACC                                                       0.75
Overall CEN                                                       0.44812
Overall J                                                         (1.04762,0.52381)
Overall MCC                                                       0.48795
Overall MCEN                                                      0.29904
Overall RACC                                                      0.59375
Overall RACCU                                                     0.625
P-Value                                                           0.36974
PPV Macro                                                         0.85714
PPV Micro                                                         0.75
Pearson C                                                         0.43853
Phi-Squared                                                       0.2381
RCI                                                               0.20871
RR                                                                4.0
Reference Entropy                                                 0.95443
Response Entropy                                                  0.54356
SOA1(Landis & Koch)                                               Fair
SOA2(Fleiss)                                                      Poor
SOA3(Altman)                                                      Fair
SOA4(Cicchetti)                                                   Poor
SOA5(Cramer)                                                      Relatively Strong
SOA6(Matthews)                                                    Weak
Scott PI                                                          0.33333
Standard Error                                                    0.15309
TNR Macro                                                         0.66667
TNR Micro                                                         0.75
TPR Macro                                                         0.66667
TPR Micro                                                         0.75
Zero-one Loss                                                     2

Class Statistics :

Classes                                                           Class1        Class2        
ACC(Accuracy)                                                     0.75          0.75          
AGF(Adjusted F-score)                                             0.53979       0.81325       
AGM(Adjusted geometric mean)                                      0.73991       0.5108        
AM(Difference between automatic and manual classification)        -2            2             
AUC(Area under the ROC curve)                                     0.66667       0.66667       
AUCI(AUC value interpretation)                                    Fair          Fair          
AUPR(Area under the PR curve)                                     0.66667       0.85714       
BCD(Bray-Curtis dissimilarity)                                    0.125         0.125         
BM(Informedness or bookmaker informedness)                        0.33333       0.33333       
CEN(Confusion entropy)                                            0.5           0.43083       
DOR(Diagnostic odds ratio)                                        None          None          
DP(Discriminant power)                                            None          None          
DPI(Discriminant power interpretation)                            None          None          
ERR(Error rate)                                                   0.25          0.25          
F0.5(F0.5 score)                                                  0.71429       0.75758       
F1(F1 score - harmonic mean of precision and sensitivity)         0.5           0.83333       
F2(F2 score)                                                      0.38462       0.92593       
FDR(False discovery rate)                                         0.0           0.28571       
FN(False negative/miss/type 2 error)                              2             0             
FNR(Miss rate or false negative rate)                             0.66667       0.0           
FOR(False omission rate)                                          0.28571       0.0           
FP(False positive/type 1 error/false alarm)                       0             2             
FPR(Fall-out or false positive rate)                              0.0           0.66667       
G(G-measure geometric mean of precision and sensitivity)          0.57735       0.84515       
GI(Gini index)                                                    0.33333       0.33333       
GM(G-mean geometric mean of specificity and sensitivity)          0.57735       0.57735       
IBA(Index of balanced accuracy)                                   0.11111       0.55556       
ICSI(Individual classification success index)                     0.33333       0.71429       
IS(Information score)                                             1.41504       0.19265       
J(Jaccard index)                                                  0.33333       0.71429       
LS(Lift score)                                                    2.66667       1.14286       
MCC(Matthews correlation coefficient)                             0.48795       0.48795       
MCCI(Matthews correlation coefficient interpretation)             Weak          Weak          
MCEN(Modified confusion entropy)                                  0.38998       0.51639       
MK(Markedness)                                                    0.71429       0.71429       
N(Condition negative)                                             5             3             
NLR(Negative likelihood ratio)                                    0.66667       0.0           
NLRI(Negative likelihood ratio interpretation)                    Negligible    Good          
NPV(Negative predictive value)                                    0.71429       1.0           
OC(Overlap coefficient)                                           1.0           1.0           
OOC(Otsuka-Ochiai coefficient)                                    0.57735       0.84515       
OP(Optimized precision)                                           0.25          0.25          
P(Condition positive or support)                                  3             5             
PLR(Positive likelihood ratio)                                    None          1.5           
PLRI(Positive likelihood ratio interpretation)                    None          Poor          
POP(Population)                                                   8             8             
PPV(Precision or positive predictive value)                       1.0           0.71429       
PRE(Prevalence)                                                   0.375         0.625         
Q(Yule Q - coefficient of colligation)                            None          None          
QI(Yule Q interpretation)                                         None          None          
RACC(Random accuracy)                                             0.04688       0.54688       
RACCU(Random accuracy unbiased)                                   0.0625        0.5625        
TN(True negative/correct rejection)                               5             1             
TNR(Specificity or true negative rate)                            1.0           0.33333       
TON(Test outcome negative)                                        7             1             
TOP(Test outcome positive)                                        1             7             
TP(True positive/hit)                                             1             5             
TPR(Sensitivity, recall, hit rate, or true positive rate)         0.33333       1.0           
Y(Youden index)                                                   0.33333       0.33333       
dInd(Distance index)                                              0.66667       0.66667       
sInd(Similarity index)                                            0.5286        0.5286
   
>>> cm2.stat(summary=True)
Overall Statistics : 

ACC Macro                                                         0.75
F1 Macro                                                          0.66667
FPR Macro                                                         0.33333
Kappa                                                             0.38462
Overall ACC                                                       0.75
PPV Macro                                                         0.85714
SOA1(Landis & Koch)                                               Fair
TPR Macro                                                         0.66667
Zero-one Loss                                                     2

Class Statistics :

Classes                                                           Class1        Class2        
ACC(Accuracy)                                                     0.75          0.75          
AUC(Area under the ROC curve)                                     0.66667       0.66667       
AUCI(AUC value interpretation)                                    Fair          Fair          
F1(F1 score - harmonic mean of precision and sensitivity)         0.5           0.83333       
FN(False negative/miss/type 2 error)                              2             0             
FP(False positive/type 1 error/false alarm)                       0             2             
FPR(Fall-out or false positive rate)                              0.0           0.66667       
N(Condition negative)                                             5             3             
P(Condition positive or support)                                  3             5             
POP(Population)                                                   8             8             
PPV(Precision or positive predictive value)                       1.0           0.71429       
TN(True negative/correct rejection)                               5             1             
TON(Test outcome negative)                                        7             1             
TOP(Test outcome positive)                                        1             7             
TP(True positive/hit)                                             1             5             
TPR(Sensitivity, recall, hit rate, or true positive rate)         0.33333       1.0 
                               
>>> cm3 = ConfusionMatrix(matrix={"Class1": {"Class1": 1, "Class2":0}, "Class2": {"Class1": 2, "Class2": 5}},transpose=True) # Transpose Matrix      
>>> cm3.print_matrix()
Predict          Class1    Class2    
Actual
Class1           1         2         

Class2           0         5         
  • matrix() and normalized_matrix() renamed to print_matrix() and print_normalized_matrix() in version 1.5

Activation threshold

threshold is added in version 0.9 for real value prediction.

For more information visit Example3

Load from file

file is added in version 0.9.5 in order to load saved confusion matrix with .obj format generated by save_obj method.

For more information visit Example4

Sample weights

sample_weight is added in version 1.2

For more information visit Example5

Transpose

transpose is added in version 1.2 in order to transpose input matrix (only in Direct CM mode)

Relabel

relabel method is added in version 1.5 in order to change ConfusionMatrix classnames.

>>> cm.relabel(mapping={0:"L1",1:"L2",2:"L3"})
>>> cm
pycm.ConfusionMatrix(classes: ['L1', 'L2', 'L3'])

Position

position method is added in version 2.8 in order to find the indexes of observations in predict_vector which made TP, TN, FP, FN.

>>> cm.position()
{0: {'FN': [], 'FP': [0, 7], 'TP': [1, 4, 9], 'TN': [2, 3, 5, 6, 8, 10, 11]}, 1: {'FN': [5, 10], 'FP': [3], 'TP': [6], 'TN': [0, 1, 2, 4, 7, 8, 9, 11]}, 2: {'FN': [0, 3, 7], 'FP': [5, 10], 'TP': [2, 8, 11], 'TN': [1, 4, 6, 9]}}

To array

to_array method is added in version 2.9 in order to returns the confusion matrix in the form of a NumPy array. This can be helpful to apply different operations over the confusion matrix for different purposes such as aggregation, normalization, and combination.

>>> cm.to_array()
array([[3, 0, 0],
       [0, 1, 2],
       [2, 1, 3]])
>>> cm.to_array(normalized=True)
array([[1.     , 0.     , 0.     ],
       [0.     , 0.33333, 0.66667],
       [0.33333, 0.16667, 0.5    ]])
>>> cm.to_array(normalized=True,one_vs_all=True, class_name="L1")
array([[1.     , 0.     ],
       [0.22222, 0.77778]])

Combine

combine method is added in version 3.0 in order to merge two confusion matrices. This option will be useful in mini-batch learning.

>>> cm_combined = cm2.combine(cm3)
>>> cm_combined.print_matrix()
Predict      Class1       Class2       
Actual
Class1       2            4            

Class2       0            10           

Plot

plot method is added in version 3.0 in order to plot a confusion matrix using Matplotlib or Seaborn.

>>> cm.plot()
>>> from matplotlib import pyplot as plt
>>> cm.plot(cmap=plt.cm.Greens,number_label=True,plot_lib="matplotlib")
>>> cm.plot(cmap=plt.cm.Reds,normalized=True,number_label=True,plot_lib="seaborn")

Online help

online_help function is added in version 1.1 in order to open each statistics definition in web browser

>>> from pycm import online_help
>>> online_help("J")
>>> online_help("SOA1(Landis & Koch)")
>>> online_help(2)
  • List of items are available by calling online_help() (without argument)
  • If PyCM website is not available, set alt_link = True (new in version 2.4)

Parameter recommender

This option has been added in version 1.9 to recommend the most related parameters considering the characteristics of the input dataset. The suggested parameters are selected according to some characteristics of the input such as being balance/imbalance and binary/multi-class. All suggestions can be categorized into three main groups: imbalanced dataset, binary classification for a balanced dataset, and multi-class classification for a balanced dataset. The recommendation lists have been gathered according to the respective paper of each parameter and the capabilities which had been claimed by the paper.

>>> cm.imbalance
False
>>> cm.binary
False
>>> cm.recommended_list
['MCC', 'TPR Micro', 'ACC', 'PPV Macro', 'BCD', 'Overall MCC', 'Hamming Loss', 'TPR Macro', 'Zero-one Loss', 'ERR', 'PPV Micro', 'Overall ACC']

Compare

In version 2.0, a method for comparing several confusion matrices is introduced. This option is a combination of several overall and class-based benchmarks. Each of the benchmarks evaluates the performance of the classification algorithm from good to poor and give them a numeric score. The score of good and poor performances are 1 and 0, respectively.

After that, two scores are calculated for each confusion matrices, overall and class-based. The overall score is the average of the score of six overall benchmarks which are Landis & Koch, Fleiss, Altman, Cicchetti, Cramer, and Matthews. In the same manner, the class-based score is the average of the score of six class-based benchmarks which are Positive Likelihood Ratio Interpretation, Negative Likelihood Ratio Interpretation, Discriminant Power Interpretation, AUC value Interpretation, Matthews Correlation Coefficient Interpretation and Yule's Q Interpretation. It should be noticed that if one of the benchmarks returns none for one of the classes, that benchmarks will be eliminated in total averaging. If the user sets weights for the classes, the averaging over the value of class-based benchmark scores will transform to a weighted average.

If the user sets the value of by_class boolean input True, the best confusion matrix is the one with the maximum class-based score. Otherwise, if a confusion matrix obtains the maximum of both overall and class-based scores, that will be reported as the best confusion matrix, but in any other case, the compared object doesn’t select the best confusion matrix.

>>> cm2 = ConfusionMatrix(matrix={0:{0:2,1:50,2:6},1:{0:5,1:50,2:3},2:{0:1,1:7,2:50}})
>>> cm3 = ConfusionMatrix(matrix={0:{0:50,1:2,2:6},1:{0:50,1:5,2:3},2:{0:1,1:55,2:2}})
>>> cp = Compare({"cm2":cm2,"cm3":cm3})
>>> print(cp)
Best : cm2

Rank  Name   Class-Score    Overall-Score
1     cm2    9.05           2.55
2     cm3    6.05           1.98333

>>> cp.best
pycm.ConfusionMatrix(classes: [0, 1, 2])
>>> cp.sorted
['cm2', 'cm3']
>>> cp.best_name
'cm2'

Acceptable data types

ConfusionMatrix

  1. actual_vector : python list or numpy array of any stringable objects
  2. predict_vector : python list or numpy array of any stringable objects
  3. matrix : dict
  4. digit: int
  5. threshold : FunctionType (function or lambda)
  6. file : File object
  7. sample_weight : python list or numpy array of numbers
  8. transpose : bool
  • Run help(ConfusionMatrix) for ConfusionMatrix object details

Compare

  1. cm_dict : python dict of ConfusionMatrix object (str : ConfusionMatrix)
  2. by_class : bool
  3. weight : python dict of class weights (class_name : float)
  4. digit: int
  • Run help(Compare) for Compare object details

For more information visit here

Try PyCM in your browser!

PyCM can be used online in interactive Jupyter Notebooks via the Binder service! Try it out now! :

Binder

  • Check Examples in Document folder

Issues & bug reports

Just fill an issue and describe it. We'll check it ASAP! or send an email to info@pycm.ir.

  • Please complete the issue template

Outputs

  1. HTML
  2. CSV
  3. PyCM
  4. OBJ
  5. COMP

Dependencies

References

Cite

If you use PyCM in your research, we would appreciate citations to the following paper :

Download PyCM.bib

Support

License

FOSSA Status

Donate to our project

If you do like our project and we hope that you do, can you please support us? Our project is not and is never going to be working for profit. We need the money just so we can continue doing what we do ;-) .

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

Unreleased

3.0 - 2020-10-26

Added

  • plot_test.py
  • axes_gen function
  • add_number_label function
  • plot method
  • combine method
  • matrix_combine function

Changed

  • Document modified
  • README.md modified
  • Example-2 deprecated
  • Example-7 deprecated
  • Error messages modified

2.9 - 2020-09-23

Added

  • notebook_check.py
  • to_array method
  • __copy__ method
  • copy method

Changed

  • average method refactored

2.8 - 2020-07-09

Added

  • label_map attribute
  • positions attribute
  • position method
  • Krippendorff's Alpha
  • Aickin's Alpha
  • weighted_alpha method

Changed

  • Single class bug fixed
  • CLASS_NUMBER_ERROR error type changed to pycmMatrixError
  • relabel method bug fixed
  • Document modified
  • README.md modified

2.7 - 2020-05-11

Added

  • average method
  • weighted_average method
  • weighted_kappa method
  • pycmAverageError class
  • Bangdiwala's B
  • MATLAB examples
  • Github action

Changed

  • Document modified
  • README.md modified
  • relabel method bug fixed
  • sparse_table_print function bug fixed
  • matrix_check function bug fixed
  • Minor bug in Compare class fixed
  • Class names mismatch bug fixed

2.6 - 2020-03-25

Added

  • custom_rounder function
  • complement function
  • sparse_matrix attribute
  • sparse_normalized_matrix attribute
  • Net benefit (NB)
  • Yule's Q interpretation (QI)
  • Adjusted Rand index (ARI)
  • TNR micro/macro
  • FPR micro/macro
  • FNR micro/macro

Changed

  • sparse parameter added to print_matrix,print_normalized_matrix and save_stat methods
  • header parameter added to save_csv method
  • Handler functions moved to pycm_handler.py
  • Error objects moved to pycm_error.py
  • Verified tests references updated
  • Verified tests moved to verified_test.py
  • Test system modified
  • CONTRIBUTING.md updated
  • Namespace optimized
  • README.md modified
  • Document modified
  • print_normalized_matrix method modified
  • normalized_table_calc function modified
  • setup.py modified
  • summary mode updated
  • Dockerfile updated
  • Python 3.8 added to .travis.yaml and appveyor.yml

Removed

  • PC_PI_calc function

2.5 - 2019-10-16

Added

  • __version__ variable
  • Individual classification success index (ICSI)
  • Classification success index (CSI)
  • Example-8 (Confidence interval)
  • install.sh
  • autopep8.sh
  • Dockerfile
  • CI method (supported statistics : ACC,AUC,Overall ACC,Kappa,TPR,TNR,PPV,NPV,PLR,NLR,PRE)

Changed

  • test.sh moved to .travis folder
  • Python 3.4 support dropped
  • Python 2.7 support dropped
  • AUTHORS.md updated
  • save_stat,save_csv and save_html methods Non-ASCII character bug fixed
  • Mixed type input vectors bug fixed
  • CONTRIBUTING.md updated
  • Example-3 updated
  • README.md modified
  • Document modified
  • CI attribute renamed to CI95
  • kappa_se_calc function renamed to kappa_SE_calc
  • se_calc function modified and renamed to SE_calc
  • CI/SE functions moved to pycm_ci.py
  • Minor bug in save_html method fixed

2.4 - 2019-07-31

Added

  • Tversky index (TI)
  • Area under the PR curve (AUPR)
  • FUNDING.yml

Changed

  • AUC_calc function modified
  • Document modified
  • summary parameter added to save_html,save_stat,save_csv and stat methods
  • sample_weight bug in numpy array format fixed
  • Inputs manipulation bug fixed
  • Test system modified
  • Warning system modified
  • alt_link parameter added to save_html method and online_help function
  • Compare class tests moved to compare_test.py
  • Warning tests moved to warning_test.py

2.3 - 2019-06-27

Added

  • Adjusted F-score (AGF)
  • Overlap coefficient (OC)
  • Otsuka-Ochiai coefficient (OOC)

Changed

  • save_stat and save_vector parameters added to save_obj method
  • Document modified
  • README.md modified
  • Parameters recommendation for imbalance dataset modified
  • Minor bug in Compare class fixed
  • pycm_help function modified
  • Benchmarks color modified

2.2 - 2019-05-30

Added

  • Negative likelihood ratio interpretation (NLRI)
  • Cramer's benchmark (SOA5)
  • Matthews correlation coefficient interpretation (MCCI)
  • Matthews's benchmark (SOA6)
  • F1 macro
  • F1 micro
  • Accuracy macro

Changed

  • Compare class score calculation modified
  • Parameters recommendation for multi-class dataset modified
  • Parameters recommendation for imbalance dataset modified
  • README.md modified
  • Document modified
  • Logo updated

2.1 - 2019-05-06

Added

  • Adjusted geometric mean (AGM)
  • Yule's Q (Q)
  • Compare class and parameters recommendation system block diagrams

Changed

  • Document links bug fixed
  • Document modified

2.0 - 2019-04-15

Added

  • G-Mean (GM)
  • Index of balanced accuracy (IBA)
  • Optimized precision (OP)
  • Pearson's C (C)
  • Compare class
  • Parameters recommendation warning
  • ConfusionMatrix equal method

Changed

  • Document modified
  • stat_print function bug fixed
  • table_print function bug fixed
  • Beta parameter renamed to beta (F_calc function & F_beta method)
  • Parameters recommendation for imbalance dataset modified
  • normalize parameter added to save_html method
  • pycm_func.py splitted into pycm_class_func.py and pycm_overall_func.py
  • vector_filter,vector_check,class_check and matrix_check functions moved to pycm_util.py
  • RACC_calc and RACCU_calc functions exception handler modified
  • Docstrings modified

1.9 - 2019-02-25

Added

  • Automatic/Manual (AM)
  • Bray-Curtis dissimilarity (BCD)
  • CODE_OF_CONDUCT.md
  • ISSUE_TEMPLATE.md
  • PULL_REQUEST_TEMPLATE.md
  • CONTRIBUTING.md
  • X11 color names support for save_html method
  • Parameters recommendation system
  • Warning message for high dimension matrix print
  • Interactive notebooks section (binder)

Changed

  • save_matrix and normalize parameters added to save_csv method
  • README.md modified
  • Document modified
  • ConfusionMatrix.__init__ optimized
  • Document and examples output files moved to different folders
  • Test system modified
  • relabel method bug fixed

1.8 - 2019-01-05

Added

  • Lift score (LS)
  • version_check.py

Changed

  • color parameter added to save_html method
  • Error messages modified
  • Document modified
  • Website changed to http://www.pycm.ir
  • Interpretation functions moved to pycm_interpret.py
  • Utility functions moved to pycm_util.py
  • Unnecessary else and elif removed
  • == changed to is

1.7 - 2018-12-18

Added

  • Gini index (GI)
  • Example-7
  • pycm_profile.py

Changed

  • class_name parameter added to stat,save_stat,save_csv and save_html methods
  • overall_param and class_param parameters empty list bug fixed
  • matrix_params_calc, matrix_params_from_table and vector_filter functions optimized
  • overall_MCC_calc, CEN_misclassification_calc and convex_combination functions optimized
  • Document modified

1.6 - 2018-12-06

Added

  • AUC value interpretation (AUCI)
  • Example-6
  • Anaconda cloud package

Changed

  • overall_param and class_param parameters added to stat,save_stat and save_html methods
  • class_param parameter added to save_csv method
  • _ removed from overall statistics names
  • README.md modified
  • Document modified

1.5 - 2018-11-26

Added

  • Relative classifier information (RCI)
  • Discriminator power (DP)
  • Youden's index (Y)
  • Discriminant power interpretation (DPI)
  • Positive likelihood ratio interpretation (PLRI)
  • __len__ method
  • relabel method
  • __class_stat_init__ function
  • __overall_stat_init__ function
  • matrix attribute as dict
  • normalized_matrix attribute as dict
  • normalized_table attribute as dict

Changed

  • README.md modified
  • Document modified
  • LR+ renamed to PLR
  • LR- renamed to NLR
  • normalized_matrix method renamed to print_normalized_matrix
  • matrix method renamed to print_matrix
  • entropy_calc fixed
  • cross_entropy_calc fixed
  • conditional_entropy_calc fixed
  • print_table bug for large numbers fixed
  • JSON key bug in save_obj fixed
  • transpose bug in save_obj fixed
  • Python 3.7 added to .travis.yaml and appveyor.yml

1.4 - 2018-11-12

Added

  • Area under curve (AUC)
  • AUNU
  • AUNP
  • Class balance accuracy (CBA)
  • Global performance index (RR)
  • Overall MCC
  • Distance index (dInd)
  • Similarity index (sInd)
  • one_vs_all
  • dev-requirements.txt

Changed

  • README.md modified
  • Document modified
  • save_stat modified
  • requirements.txt modified

1.3 - 2018-10-10

Added

  • Confusion entropy (CEN)
  • Overall confusion entropy (Overall CEN)
  • Modified confusion entropy (MCEN)
  • Overall modified confusion entropy (Overall MCEN)
  • Information score (IS)

Changed

  • README.md modified

1.2 - 2018-10-01

Added

  • No information rate (NIR)
  • P-Value
  • sample_weight
  • transpose

Changed

  • README.md modified
  • Key error in some parameters fixed
  • OSX env added to .travis.yml

1.1 - 2018-09-08

Added

  • Zero-one loss
  • Support
  • online_help function

Changed

  • README.md modified
  • html_table function modified
  • table_print function modified
  • normalized_table_print function modified

1.0 - 2018-08-30

Added

  • Hamming loss

Changed

  • README.md modified

0.9.5 - 2018-07-08

Added

  • Obj load
  • Obj save
  • Example-4

Changed

  • README.md modified
  • Block diagram updated

0.9 - 2018-06-28

Added

  • Activation threshold
  • Example-3
  • Jaccard index
  • Overall Jaccard index

Changed

  • README.md modified
  • setup.py modified

0.8.6 - 2018-05-31

Added

  • Example section in document
  • Python 2.7 CI
  • JOSS paper pdf

Changed

  • Cite section
  • ConfusionMatrix docstring
  • round function changed to numpy.around
  • README.md modified

0.8.5 - 2018-05-21

Added

  • Example-1 (Comparison of three different classifiers)
  • Example-2 (How to plot via matplotlib)
  • JOSS paper
  • ConfusionMatrix docstring

Changed

  • Table size in HTML report
  • Test system
  • README.md modified

0.8.1 - 2018-03-22

Added

  • Goodman and Kruskal's lambda B
  • Goodman and Kruskal's lambda A
  • Cross entropy
  • Conditional entropy
  • Joint entropy
  • Reference entropy
  • Response entropy
  • Kullback-Liebler divergence
  • Direct ConfusionMatrix
  • Kappa unbiased
  • Kappa no prevalence
  • Random accuracy unbiased
  • pycmVectorError class
  • pycmMatrixError class
  • Mutual information
  • Support numpy arrays

Changed

  • Notebook file updated

Removed

  • pycmError class

0.7 - 2018-02-26

Added

  • Cramer's V
  • 95% confidence interval
  • Chi-Squared
  • Phi-Squared
  • Chi-Squared DF
  • Standard error
  • Kappa standard error
  • Kappa 95% confidence interval
  • Cicchetti benchmark

Changed

  • Overall statistics color in HTML report
  • Parameters description link in HTML report

0.6 - 2018-02-21

Added

  • CSV report
  • Changelog
  • Output files
  • digit parameter to ConfusionMatrix object

Changed

  • Confusion matrix color in HTML report
  • Parameters description link in HTML report
  • Capitalize descriptions

0.5 - 2018-02-17

Added

  • Scott's pi
  • Gwet's AC1
  • Bennett S score
  • HTML report

0.4 - 2018-02-05

Added

  • TPR micro/macro
  • PPV micro/macro
  • Overall RACC
  • Error rate (ERR)
  • FBeta score
  • F0.5
  • F2
  • Fleiss benchmark
  • Altman benchmark
  • Output file(.pycm)

Changed

  • Class with zero item
  • Normalized matrix

Removed

  • Kappa and SOA for each class

0.3 - 2018-01-27

Added

  • Kappa
  • Random accuracy
  • Landis and Koch benchmark
  • overall_stat

0.2 - 2018-01-24

Added

  • Population
  • Condition positive
  • Condition negative
  • Test outcome positive
  • Test outcome negative
  • Prevalence
  • G-measure
  • Matrix method
  • Normalized matrix method
  • Params method

Changed

  • statistic_result to class_stat
  • params to stat

0.1 - 2018-01-22

Added

  • ACC
  • BM
  • DOR
  • F1-Score
  • FDR
  • FNR
  • FOR
  • FPR
  • LR+
  • LR-
  • MCC
  • MK
  • NPV
  • PPV
  • TNR
  • TPR
  • documents and README.md

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pycm, version 3.0
Filename, size File type Python version Upload date Hashes
Filename, size pycm-3.0-py2.py3-none-any.whl (61.9 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size pycm-3.0.tar.gz (771.6 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page