Skip to main content

Open-source Python library to compute landscape metrics

Project description

PyPI version fury.io Build Status Coverage Status GitHub license Binder

PyLandStats

Overview

Open-source Pythonic library to compute landscape metrics within the PyData stack (NumPy, pandas, matplotlib...)

Features

Read GeoTiff files of land use/cover

import pylandstats as pls

ls = pls.read_geotiff('data/vaud_g100_clc00_V18_5.tif')

ls.plot_landscape(legend=True)

landscape-vaud

Compute pandas DataFrames of landscape metrics at the patch, class and landscape level

patch_metrics_df = ls.compute_patch_metrics_df()
patch_metrics_df.head()
patch_id class_val area perimeter perimeter_area_ratio shape_index fractal_dimension euclidean_nearest_neighbor
0 1 115 10600 92.17 2.409 1.130 1431.782
1 1 13 2600 200.00 1.625 1.100 223.607
2 1 2 600 300.00 1.000 1.012 223.607
3 1 69 6000 86.96 1.765 1.088 316.228
4 1 76 8800 115.79 2.444 1.137 316.228
class_metrics_df = ls.compute_class_metrics_df(metrics=['proportion_of_landscape', 'edge_density'])
class_metrics_df
class_val proportion_of_landscape edge_density
1 7.702 4.459
2 92.298 4.459

Also analyze the spatio-temporal evolution of the landscape:

input_fnames = [
    'data/vaud_g100_clc00_V18_5.tif',
    'data/vaud_g100_clc06_V18_5a.tif',
    'data/vaud_g100_clc12_V18_5a.tif'
]

sta = pls.SpatioTemporalAnalysis(
    input_fnames, metrics=[
        'proportion_of_landscape',
        'edge_density',
        'fractal_dimension_am',
        'landscape_shape_index',
        'shannon_diversity_index'
    ], classes=[1], dates=[2000, 2006, 2012], 
)

fig, axes = sta.plot_metrics(
    class_val=1,
    metrics=['proportion_of_landscape', 'edge_density', 'fractal_dimension_am'],
    num_cols=3)
fig.suptitle('Class-level metrics (urban)')

spatiotemporal-analysis

See the pylandstats-notebooks repository for a more complete overview

Installation

To install use pip:

$ pip install pylandstats

If you want to use the BufferAnalysis, you will need geopandas. The easiest to install it is via conda-forge as in:

$ conda install -c conda-forge geopandas

and then install PyLandStats with the geo extras as in:

$ pip install pylandstats[geo]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pylandstats-0.4.1.tar.gz (22.2 kB view details)

Uploaded Source

File details

Details for the file pylandstats-0.4.1.tar.gz.

File metadata

  • Download URL: pylandstats-0.4.1.tar.gz
  • Upload date:
  • Size: 22.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for pylandstats-0.4.1.tar.gz
Algorithm Hash digest
SHA256 8c24fb1af883bd9f837db944f5b3daa7ce7fff3575dbc57a67fc0bf111466b6b
MD5 c4f9970bd66f8045a7b15505cf8404c1
BLAKE2b-256 072d6e83424397db00e21e5d3a05317a5af35bdb02ee53599dc0c39dffc8224b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page